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Abstract

The 21st century witnessed the ascent of deep learning, paving the way for data-driven
topology optimization approaches via neural networks. This paradigm shift holds
the promise of significant speed-ups compared to classical methods; however, deep
learning still faces challenges related to generalization and the requirement for training
data. Moreover, the field suffers from a dramatic lack of research infrastructure, which
hampers both progress and comparability of results. Notably, prior to our research,
neither a reliable yet flexible code base nor public three-dimensional datasets existed.
We tackled these challenges by contributing a new public dataset and developing a
Python library for three-dimensional topology optimization utilizing deep learning.
Additionally, we demonstrate that incorporating physical information into the training
process significantly reduces the reliance on extensive training data and enhances
overall generalization capabilities.
This work consists of four publications. The initial publication introduces the SELTO
dataset, comprising nearly 10, 000 three-dimensional samples, each providing topol-
ogy optimization problems and corresponding solutions. The second publication
presents DL4TO, a pioneering PyTorch-based deep learning library for topology
optimization, accompanied by comprehensive documentation and online tutorials.
The third publication showcases the efficacy of equivariant neural networks and
a physics-inspired data preprocessing strategy, substantially reducing the need for
extensive training datasets and enhancing generalization capabilities. Finally, the
fourth paper employs neural operators to replace the PDE solver in the widely
used SIMP method, which is its primary bottleneck. This publication underscores
the efficacy of equivariance in learned methods and emphasizes the crucial role of
a gradient-consistent loss function when applied in a gradient-based optimization
scheme like SIMP.





Zusammenfassung

Die Gewährleistung von Qualität und Stabilität mechanischer Strukturen unter
Berücksichtigung von Kosten- und Gewichtsvorgaben stellt seit jeher eine große
Herausforderung im industriellen Bauwesen dar. Mit dem Aufkommen von Computer-
systemen entstanden in den 1990er Jahren völlig neue Möglichkeiten zur automatisier-
ten Strukturoptimierung. Insbesondere bieten Methoden der Topologieoptimierung
Ingenieuren ein leistungsstarkes Werkzeug zum Entwurf potenziell optimaler De-
signs, basierend auf mathematischen Optimierungsalgorithmen. Trotz erheblicher
Fortschritte auf dem Gebiet bestehen weiterhin Herausforderungen, insbesondere
aufgrund langer Rechenzeiten für hochauflösende dreidimensionale Strukturen.
Große Fortschritte im Bereich des Deep Learnings in den 2010er Jahren ebneten den
Weg für neue datengetriebene Ansätze zur Topologieoptimierung mittels neuronaler
Netzwerke. Dieser Paradigmenwechsel verspricht eine erhebliche Verkürzung der
Rechenzeiten im Vergleich zu klassischen Methoden. Trotz des enormen Potenzials
stehen Deep Learning Methoden nach wie vor großen Herausforderungen gegenüber,
insbesondere hinsichtlich der Generalisierbarkeit von Ergebnissen und dem hohen
Bedarf an umfassenden Trainingsdaten. Zusätzlich weist das Gebiet der datengetriebe-
nen Topologieoptimierung einen drastischen Mangel an Forschungsinfrastruktur auf,
der sowohl den Fortschritt als auch die Vergleichbarkeit von Ergebnissen behindert.
Trotz des großen Forschungsinteresses existieren weder ein zuverlässiges und flexibles
Code-Framework noch dreidimensionale Trainingsdatensätze.
Bei diesen Herausforderungen setzt die vorliegende Dissertation an. Hintergund war
die Erarbeitung und Veröffentlichung eines Datensatzes und einer darauf aufbauenden
Python-Bibliothek. Die Daten und der Code wurden öffentlich bereitgestellt mit
dem Ziel, den Zugang in den Bereich für künftige Forschende zu erleichtern und
einen Beitrag zur besseren Vergleichbarkeit und Transparenz von Ergebnissen zu
leisten. Außerdem wird gezeigt, dass die Integration physikalischer Informationen in
den Trainingsprozess die Abhängigkeit von umfangreichen Trainingsdaten erheblich
reduziert und die Generalisierbarkeit der Modelle verbessert.
Die Dissertation basiert auf vier Publikationen an der Schnittstelle von Deep Learning
und Topologieoptimierung. Die erste Veröffentlichung ist der SELTO-Datensatz, der
fast 10.000 dreidimensionale Problem-Ground-Truth Datenpaare umfasst. Die zweite



Veröffentlichung präsentiert DL4TO, eine vom Verfasser entwickelte Deep Learning-
Bibliothek für Topologieoptimierung, basierend auf PyTorch. Neben dem Code
umfasst die Bibliothek eine umfangreiche Dokumentation sowie Online-Tutorials. In
der dritten Veröffentlichung wird gezeigt, dass durch äquivariante neuronale Netzwer-
ke und eine physikinspirierte Datenvorverarbeitungsstrategie der Bedarf an großen
Trainingsdatensätzen erheblich reduziert werden kann. Außerdem wird die Verbes-
serung der allgemeinen Qualität und Generalisierbarkeit der Modelle demonstriert.
In der vierten Publikation wird der PDE-Löser, welcher das größte Bottleneck in
der weit verbreiteten SIMP-Methode darstellt, durch einen neuronalen Operator
ersetzt. Hier demonstriert der Verfasser erneut die Effektivität des äquivarianten
Lernens und hebt die entscheidende Rolle einer gradientenkonsistenten Lossfunktion
in gradientenbasierten Optimierungsschemata hervor.
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Chapter 1

Introduction

Developing and constructing three-dimensional products, particularly in industrial
settings, prompts the challenge of ensuring quality and stability within specified
cost and weight constraints. Since the 1990s, a novel domain known as topology
optimization (TO) [1] in computer-aided engineering has emerged. TO focuses on
determining the optimal arrangement of materials under predefined constraints
within a given design space. The prevailing methods for TO, such as density-based
techniques like SIMP, involve discretizing the design domain into a voxel grid, where
each voxel is assigned a material density value. SIMP and similar methods use an
iterative update scheme to progressively adjust the density field based on predefined
optimization objectives and constraints.
Despite significant progress in the field, challenges persist, especially in dealing with
long computation times for high-resolution and three-dimensional components. These
extended computation times primarily arise from the resource-intensive solving of the
underlying partial differential equation (PDE) for linear elasticity, which is required
at each iteration.
Motivated by the recent rise of deep learning (DL), researchers have explored integrat-
ing neural networks into TO [2, 3]. DL-based TO holds the potential for substantial
speed-ups compared to classical approaches. Consequently, various use cases and
strategies for employing neural networks in TO have emerged. Initial efforts aimed
at reducing the number of SIMP iterations or even eliminating classical iterations
altogether. Alternatively, DL methods can accelerate classical TO iterations by re-
placing the PDE solver with a neural network, addressing SIMP’s primary bottleneck.
While extensive research has been conducted on DL-based approaches for PDEs
in recent years, applying these methods to TO remains relatively new and has yet
to be explored. Finally, an alternative approach involves using neural networks to
reparameterize TO’s density field through an implicit representation. Since these
models are mesh-independent, they can represent the density function at arbitrary
resolutions.

1



2 Chapter 1. Introduction

This thesis provides a comprehensive review of the latest DL methodologies applied
to TO. It includes a critical analysis of the drawbacks and limitations inherent in
various approaches, supplemented by insights and recommendations derived from
my research to advance and enhance the current state of the field. Furthermore, this
thesis integrates four of my published works addressing critical aspects of learned
TO. These publications have substantially improved the research infrastructure and
understanding of DL’s capabilities and limitations in the field.

1.1 Structure of the Thesis

This thesis is split into two parts. In the first part, we define the classical TO problem
and discuss common approaches for classical and learned TO. In Chapter 2, we
establish foundational knowledge essential for subsequent discussions. Sections 2.1
and 2.2 provide an introduction to PDEs and DL, respectively. In Chapter 3, we
derive the linear elasticity problem formulation and discuss SIMP, ESO, and level-set
methods, which are the three most common classical approaches for TO. Chapter 4
provides a comprehensive overview of recent advancements and hindrances in applying
DL techniques to TO. Finally, the second part of the thesis encompasses our original
publications on learned topology optimization methodologies.

1.2 Contributions and Papers

This cumulative thesis is based on the following publications:

SELTO Dataset: A Benchmark Dataset for Deep Learning for 3D
Topology Optimization
Sören Dittmer, David Erzmann, Henrik Harms, Rielson Falck, Marco Gosch
Zenodo, (2023).
DOI: 10.5281/zenodo.7781392
Rielson Falck and Marco Gosch (Ariane Group) generated the dataset using the
SIMP implementation in the commercial Synera software. I undertook the task of
translating the dataset into Python, ensuring compatibility with the DL4TO software
library, and conducted thorough testing and bug-fixing.

DL4TO: A Deep Learning Library for Sample-Efficient Topology
Optimization
David Erzmann∗, Sören Dittmer, Henrik Harms, Peter Maaß
International Conference on Geometric Science of Information, Springer, (2023).
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DOI: 10.1007/978-3-031-38271-0_54
The concept and structure of the DL4TO library was formed in discussions with Sören
Dittmer. I took on the primary role in implementing the library, as well as managing
its maintenance, documentation, and online tutorials. Additionally, I conceived and
wrote the paper and conducted the numerical experiments.

SELTO: Sample-Efficient Learned Topology Optimization
Sören Dittmer, David Erzmann∗, Henrik Harms, Peter Maaß
Currently under review at Heliyon, arXiv preprint arXiv:2209.05098, (2023).
DOI: 10.48550/arXiv.2209.05098
The idea was formed in discussions with Sören Dittmer. I am responsible for the
implementation and did the majority of the writing of the paper.

Equivariant Neural Operators for Gradient-Consistent Topology
Optimization
David Erzmann∗, Sören Dittmer
Journal of Computational Design and Engineering, (2024).
DOI: 10.1093/jcde/qwae039
The idea was formed in discussions with Sören Dittmer. I am responsible for the
implementation and did the majority of the writing of the paper.

1.3 List of Abbreviations

3D Three-dimensional

TO Topology optimization

SIMP Solid isotropic material with penalization

ESO Evolutionary structural optimization

BESO Bi-directional evolutionary structural optimization

PDE Partial differential equation

FDM Finite difference method

FEM Finite element method

∗Main author
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AI Artificial intelligence

ML Machine learning

DL Deep learning

NN Neural network

MLP Multilayer perceptron

CNN Convolutional neural network

PINN Physics-informed neural network

NO Neural operator

DeepONet Deep operator network

FNO Fourier neural operator

INR Implicit neural representation

RL Reinforcement learning



Part I

Background
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Chapter 2

Preliminaries and Foundations

In this chapter, we provide a concise overview of the foundational concepts essential
for understanding the context of this thesis. We start with an overview of relevant
PDEs in Section 2.1. Subsequently, we briefly introduce the basics of deep learning
in Section 2.2.

2.1 Partial Differential Equations

Partial differential equations (PDEs) are an essential tool for modeling natural
phenomena. PDEs naturally arise in a wide range of applications, ranging from
scattering problems [4], electrodynamics [5], quantum physics [6] to finance [7] and
ecology [8]. This section presents an introductory overview of PDEs and discusses
numerical methods for their solution. For a more comprehensive exploration of the
topic, see [9, 10, 11].

2.1.1 Categorization of PDEs

PDEs are mathematical equations that involve partial derivatives of an unknown
function of several independent variables. They can be categorized into different
types based on their properties and characteristics. In the context of this thesis,
we focus on second-order PDEs, i.e., PDEs with a highest derivative of order two.
Second-order PDEs can be classified into three categories: hyperbolic, parabolic, and
elliptic. From a physical perspective, hyperbolic equations model the transport of
physical quantities, such as fluids or waves. Parabolic PDEs describe evolutionary
phenomena, including heat conduction and particle diffusion. Elliptic equations are
associated with steady-state systems, generally corresponding to the minimum of
energy [12].

7
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A PDE can be linear or nonlinear. It is termed linear if it exhibits linearity in
the unknown function and all its derivatives. Linear PDEs possess well-understood
properties, making them more tractable than their nonlinear counterparts.

2.1.2 Numerical PDE Solvers

The majority of PDEs arising from real-world problems lack analytic solutions.
Consequently, for many practical problems, numerical solvers become the sole viable
option. Here, we provide a brief overview of the most prevalent numerical methods
for solving PDEs, along with their key characteristics.

In addressing elliptic PDEs, the finite difference method (FDM) and the finite element
method (FEM) emerge as the foremost techniques for discretization and solution. FDM
involves discretizing the computational domain into a grid and approximating spatial
derivatives of the PDE solution through linear combinations of values at grid points,
utilizing finite difference operators [11]. This approach is based on a local Taylor series
expansion and proves relatively straightforward for implementation on rectangular
geometries. However, it typically necessitates a uniform grid approximation of the
domain, potentially posing challenges for complex geometries. On the other hand,
the FEM [13] focuses on approximating the PDE solution within a finite-dimensional
vector space spanned by basis functions with local support. The basis functions are
often chosen as piece-wise polynomials supported on a set of elements, which are
adjacent cells in the mesh. While more flexible than FDM, FEM is usually more
challenging to implement and requires the construction of a finite element mesh,
which can be computationally expensive. Both finite difference and finite element
methods yield large, sparse, and highly structured linear algebra systems.

Beyond FDM and FEM, alternative approaches exist. Spectral methods [11, 14, 15]
form one such category, relying on approximating the solution u within a finite-
dimensional vector space spanned by basis functions with global support, typically
involving Chebyshev polynomials or trigonometric functions. Spectral methods have
an exponential convergence rate and usually require only a small number of basis
functions to achieve a given accuracy, leading to smaller but dense linear algebra
systems. The finite volume method (FVM) solves the PDE by discretizing the domain
into control volumes and integrating the governing equations over these volumes.
The FVM is especially effective for discretizing hyperbolic equations and convection-
dominated problems. Alternatively, approaches like particle methods or discrete
element methods [16] focus on individual elements and their interactions. These
methods are particularly suited for simulating complex applications such as sand
simulation, which can be challenging to model using other methods.

For time-dependent PDEs, the typical procedure involves time discretization using
a time-stepping scheme, such as backward differentiation schemes (e.g., backward



2.1. Partial Differential Equations 9

Euler) and Runge-Kutta methods [11, 13]. Subsequently, a spatial discretization
method, such as previously discussed, is employed to solve the resulting stationary
PDE at each time step. Alternatively, joint space-time methods can be employed to
discretize the space and time domain simultaneously, which is especially useful in
the case of moving domains [17, 18].

2.1.3 Tensor Field Operators

We require operators tailored for tensor fields to formulate the strong and variational
formulation of the PDE for linear elasticity in Chapter 3. Let m,n, k, d ∈ N, and
Ω ⊂ Rd be a spatial domain for the subsequent definitions. We commence with the
definition of the double dot product, a generalization of inner products to tensor
fields.
Definition 2.1.1. Let A : Ω → Rm×n and B : Ω → Rm×n. Then the double dot
product is defined as

A : B =
n∑︂

j=1

m∑︂
i=1

AijBij.

For higher-order tensors fields, the definition can be adjusted accordingly, e.g., for
C : Ω→ Rm×n×k we have

(A : C)ℓ =
n∑︂

j=1

m∑︂
i=1

AijCijℓ, ℓ ∈ {1, . . . , k}.

Taking the double dot product between two tensors of orders p and q will result in a
tensor of order p+ q − 4.
We continue with the definition of the trace of a second-order tensor field:
Definition 2.1.2. Let A : Ω→ Rn×n. Then the trace of A is defined as

tr A =
n∑︂

i=1

Aii.

Concluding this section, we introduce the definitions of differential operators for
tensor and vector fields. Denoting C1 as the space of continuously differentiable
functions, we define the divergence of a second-order tensor field, followed by the
Jacobian of a vector field.
Definition 2.1.3. Let A ∈ C1(Ω,Rn×d). Then the divergence of A is defined as

(div A)i =
d∑︂

j=1

∂jAij, i ∈ {1, . . . , n}.

Definition 2.1.4. Let A ∈ C1(Ω,Rn). Then the Jacobian of A is defined as

(∇A)ij = ∂jAi, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.
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2.2 Deep Learning

In contemporary society, artificial intelligence (AI) technology significantly impacts
various aspects of our daily lives. Beyond its influence on consumer recommendation
systems [19], web searches [20], weather forecasts [21], and autonomous driving [22,
23], AI algorithms are integral to everyday products like smartphones and cameras [24].
AI is a dynamic field within computer science and mathematics that focuses on
creating intelligent systems capable of emulating human-like cognitive functions. This
involves algorithms and models that enable machines to perform tasks traditionally
associated with human intellect, such as learning from data, reasoning through
complex problems, and understanding natural language.

In everyday discourse, the terms AI, machine learning (ML), and deep learning (DL)
are frequently employed interchangeably. Despite their close association, it is essential
to note that these concepts possess distinct characteristics. Figure 2.1 illustrates the
relationship between AI, ML, and DL.

ML is a subset of AI aiming at learning patterns from data by using statistical methods
for self-optimization. Instead of manually hard-coding programming software routines
to execute a specific task, the machine undergoes a training process involving data.
This training equips the machine with the capability to learn and autonomously
perform the designated task.

DL, a subset of ML that gained significant attention in recent years, is inspired by the
neuron structure of the human brain. It utilizes neural networks (NNs) with multiple
layers to analyze and interpret data hierarchically, allowing for more complex and
abstract pattern recognition. NNs are flexible parametric function approximators
that excel in supervised learning. In the following, we will give a brief introduction
to two different classes of NNs in Sections 2.2.1 and 2.2.2 and supervised training in
Section 2.2.3. For a more comprehensive introduction and overview regarding DL
methodologies, see [25, 26]. In the following section, we begin with an introduction
to multilayer perceptrons.

2.2.1 Multilayer Perceptrons

Multilayer perceptrons (MLPs) constitute acyclic artificial NNs wherein information
exclusively progresses forward from the input layer through the hidden layers to
the output layer [25]. MLPs are usually employed for learning from data that is
neither sequential nor time-dependent. An MLP is dense, i.e., each neuron establishes
connections with all neurons in the subsequent layer. The building blocks of MLPs
are dense layers, which we introduce in the following definition.
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Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 2.1: DL is a subset of ML, and ML is a subset of AI.

Definition 2.2.1. Let n0, . . . , nL ∈ N. An MLP fθ : Rn0 → RnL with L ∈ N layers
is defined by

fθ = fL
θL
◦ · · · ◦ f 1

θ1
,

where f i
θi
: Rni−1 → Rni are dense or fully connected layers given by

f i
θi
(x) = σi(Wix+ bi). (2.1)

Here, σi : R→ R is called activation function and is applied element-wise. In each
layer, Wi ∈ Rni×ni−1 is called weight matrix and bi ∈ Rni is the bias. The vector
θi denotes the parameters of the layer and contains all the entries in Wi and bi.
For simplicity, we will write θi = [Wi, bi]. The network parameters are given by
θ = [θ1, . . . , θL]. The first layer is called the input layer, and the last is the output
layer. Intermediate layers are called hidden layers.

The activation function σi in Equation (2.1) is usually fixed for each layer. One of
the most widely used activation functions is the rectified linear unit (ReLU) [27]
defined by σi(x) = max(0, x). Common activation functions are depicted in Figure
2.2. If no activation function is used (i.e., σi is the element-wise identity function),
we call the resulting layer a linear layer. The number of layers L is called a hyperpa-
rameter. Hyperparameters are not learned directly from the training procedure (see
Section 2.2.3) but are instead freely chosen a priori.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) represent a specialized category within feed-
forward networks, characterized by their non-fully connected nature and utilization
of weight sharing to achieve translation equivariance. CNNs can be considered a
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Figure 2.2: Plots of the three most widely used activation functions.

restrained version of MLPs that find particular utility in processing structured grids
like 2D or 3D images [28]. CNNs are capable of capturing high spatial correlation of
neighboring pixels, which is not taken into account by dense layers. Demonstrating
remarkable effectiveness, CNNs excel in diverse image recognition tasks like object
detection [29], facial recognition [30], medical image analysis [31, 32], and video
analysis [33, 34].
A fundamental component of CNNs is the integration of NNs as filters for a series of
discrete convolutions followed by nonlinear mappings. The principle of weight sharing
enables identical filters to be deployed at various locations across the input image,
thereby reusing the same weights to extract features. Typically, multiple layers of such
filters are stacked, incorporating additional operations like pooling, downsampling, or
upsampling between layers. The collective structure of convolutional layers constitutes
the CNN architecture.

Definition 2.2.2. Let c1, c2 ∈ N be the number of input and output channels,
respectively. Further, let σ : R → R be an element-wise activation function and
let W ∈ Rc1×c2×m×n and b ∈ Rc2 . In two dimensions and in its simplest form, i.e.,
without padding, stride, and dilation, a convolutional layer is defined as a mapping

fθ : Rc1×h×w → Rc2×(h−m+1)×(w−n+1),

fθ(x)c̃,i,j = σ

(︄
c1∑︂
c=1

m∑︂
r=1

n∑︂
s=1

Wc,c̃,r,s · xc,(i+r−1),(j+s−1) + bc̃

)︄
.

Here, W represents the convolutional kernels, b is the bias, and θ = [W, b] denotes
the parameters of the layer. The input x is a tensor with dimensions height h ≥ m,
width w ≥ n, and number of channels c1.

3D convolutions can be derived analogously to Definition 2.2.2. Note that there are
various extensions to this standard multi-channel convolution, for example, using
padding and using strided, grouped or separable convolutions [35, 36].
In addition to employing convolutional layers, most CNNs integrate downsampling
layers to diminish spatial dimensions. This reduces computational costs and makes



2.2. Deep Learning 13

the NN invariant to small translations [25]. One of the most widely used architectures
for diverse image-to-image tasks, such as image reconstruction and segmentation, is
the U-Net architecture [32]. Derived from fully convolutional networks [37], the U-Net
comprises two main components: a contracting and an expansive part. Contemporary
iterations of the U-Net often incorporate attention mechanisms [38] within both the
contracting and expansive sections.

2.2.3 Supervised Training

We will now discuss using NNs in a supervised training setting. In supervised learning,
the objective is to deduce general rules from a given dataset D = {(ai, ui)}Ni=1 of
size N ∈ N. Here, ai and ui represent independent and identically distributed
(i.i.d.) samples from a probability distribution over a joint sample space A × U ,
i.e. (ai, ui) ∼ (A, U). We formally define the learning task as identifying a function
f : A → U that maps inputs to desired outputs.
We need to restrict ourselves to a specific hypothesis class of functions H to facilitate
the optimization process. In the case of NNs, we obtain the parametric hypothesis
class given by

H = {fθ : A → U ; θ ∈ Θ} ,

where Θ encompasses all possible network parameterizations. The hypothesis class can
be restricted to include prior knowledge, referred to as inductive bias. Incorporating
prior knowledge into the hypothesis class can drastically improve the generalization
capabilities of the DL models, for example, through the use of group equivariant
convolutions [39] (see Section 4.5).
In order to fit f to the data, we introduce a loss function ℓ : U × U → R, which we
intend to minimize over the training data pairs. This leads to the formulation of the
empirical risk

1

N

N∑︂
i=1

ℓ(fθ(ai), ui), (2.2)

which is a Monte-Carlo approximation [40] of the expected risk E(a,u)∼(A,U) ℓ(fθ(a), u).
Once the empirical risk (2.2) is defined, the next step involves solving the optimization
problem to minimize it with respect to the network’s parameters θ. This process is
referred to as training the network. Since the empirical risk serves only as a surrogate
for the actual risk, it is not necessary to minimize the empirical risk exactly. Often,
early stopping rules are applied based on the empirical risk on a held-out validation
dataset.
Since the parameter space Θ for NNs is typically high dimensional, finding a closed-
form solution for the empirical risk minimization scheme is impractical. Further,
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computing the gradient of the empirical risk (2.2) requires evaluating the network for
all examples in the dataset. This is prohibitive for large datasets with thousands or
even millions of data points. Therefore, iterative numerical procedures are employed,
particularly stochastic gradient descent methods [25, 41]. Variants of stochastic
gradient descent, such as the widely used Adam algorithm [42], are commonly used
in practical applications. The stochastic nature arises from minimizing the empirical
risk (2.2) with respect to randomly chosen partial sums, referred to as batches [43].
The term epoch indicates the number of passes completed over the entire training
dataset during the optimization process. For an in-depth exploration of optimization
methods, refer to [25].
Lastly, using gradient-based optimization schemes requires the computation of the
gradient of the loss with respect to the parameter vector θ. This is achieved through
the backpropagation algorithm [44, 45], which is based on an efficient implementation
of the chain rule. See [46] for a comprehensive explanation of the backpropagation
algorithm.
In addition to supervised learning, there exist many alternative learning tasks [25].
A notable example is unsupervised learning, where only inputs {ai}Ni=1 are provided
without the associated labels. Typical unsupervised learning tasks include generative
modeling, dimensionality reduction, or clustering.
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Classical Topology Optimization

A mechanical structure, as defined by J. E. Gordon [47], refers to “any assemblage of
materials which is intended to sustain loads”. Therefore, in the context of mechanics,
structural optimization entails configuring a material assembly in an optimal way to
support external loads efficiently. Defining what we mean by optimal is imperative to
give significance to this pursuit. For instance, this may refer to weight minimization,
prompting the search for the lightest possible structure. Conversely, one might
interpret optimality as maximizing mechanical stiffness or resistance to buckling or
instability.

The study of structural optimization can be traced back to Michell [48], who developed
the classical theory of optimal structural layout design at the beginning of the 20th
century. Since the 1960s, with the invention of the finite element method (FEM)
and the advent of modern digital computers, structural optimization has been
introduced naturally into engineering design practices to shorten the development
cycle of products. Recently, driven by the increasing demands to design competitive
products efficiently and reliably, structural optimization has become a growing field
of research. Although initiated for mechanical design problems in civil and aerospace
engineering, the field has spread to a wide range of other physical disciplines, including
acoustics [49], fluids [50], optics [51] and electromagnetics [52].

Generally, we can divide structural optimization into three categories [53]:

• Size optimization: Size optimization involves determining the optimal size
of individual components within a structure. It focuses on finding the most
efficient size and thickness for each predefined structure element.

• Shape optimization: Shape optimization deals with optimizing the geometric
configuration or contours of individual components within a structure. It aims
to enhance a structure’s performance by adjusting its elements’ shapes.

15
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Figure 3.1: Categories of structural design optimization. Top: size optimization,
middle: shape optimization, bottom: topology optimization.

• Topology optimization (TO): This is the most general form of structural opti-
mization. TO involves determining the optimal distribution of material within
a given design space. It explores the layout of structural elements, deciding
where material should be placed and where voids or less material should exist
to achieve the best structural performance.

For a visual comparison of the three categories of structural optimization, see
Figure 3.1. Among the three categories, TO is the most powerful and, at the same
time, most challenging one from both theoretical and numerical solution perspectives.
Therefore, the study of TO has become the central research theme over the last three
decades in the structural optimization community. Note that the key advantage of
TO over shape or size optimization is that no specified initial structural topology
needs to be presumed a priori.

In mathematical terms, the goal of TO is to find an optimal material distribution
that minimizes a given objective function J , subject to constraints Ck and governed
by a so-called state equation, which is typically determined by an underlying PDE.
Let the design domain Ω denote a fixed smooth open domain of Rd for d ∈ {2, 3}.
The material distribution in Ω is described by a binary point-wise density function
ρ : Ω→ {0, 1} that can take either the value 0 (void) or 1 (solid material). To keep the
definition of the TO problem as general as possible, we introduce a hypothesis space
H that defines the set of admissible density functions. The classical mathematical
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formulation of the corresponding TO problem is then given by

min
ρ∈H
J (u(ρ), ρ) (3.1)

subject to:

C0(ρ) =
1

|Ω|

∫︂
Ω

ρ dΩ ≤ Vmax, (3.2)

Ck(u(ρ), ρ) ≤ 0, k ∈ {1, . . . , N}, (3.3)
state equation, (3.4)

where the constraint functional C0 represents a volume constraint based on a maximum
volume fraction Vmax > 0. The state field u satisfies the state equation (3.4), usually
given by linear elasticity (see Chapter 3.1). Additional constraint equations (3.3) can
optionally be incorporated to impose further conditions on the design variables.

3.1 The Linear Elasticity Problem

Finding an optimized material distribution for a specific design problem involves
consideration of the underlying mechanical forces, boundary conditions, and material
properties. In the following, we discuss incorporating physical information into the
TO problem (3.1)-(3.4). This is realized via the state equation, wherein, for structural
TO, the governing PDE corresponds to linear elasticity. This PDE can be considered
a simplification of the general nonlinear theory for elasticity.

According to Oliver and de Saracibar [54], the simplifying hypotheses of the linear
elasticity theory are fulfilled if:

1. The displacements and their gradients are small, resulting in small strains.

2. There exists a neutral state in which the strains and stresses are zero.

3. The deformation process is considered to be isothermal and adiabatic, i.e.,
temperature effects and heat generation can be neglected.

In the following, we assume these hypotheses to be fulfilled, resulting in a linear
relationship between stresses and strains (see Figure 3.2).

We will develop various formulations of the linear elasticity problem in the upcoming
sections. Beginning with Section 3.1.1, we initiate the discussion by introducing
the strong formulation of the PDE. Subsequently, in Sections 3.1.2 and 3.1.3, we
will establish the variational and discretized formulations, which will serve as the
foundation for numerical implementations.
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σ

ε

σys

Figure 3.2: A typical stress-strain curve of a low-carbon steel in one dimension. The
curve demonstrates linear elasticity for small strains, with the slope given by Young’s
modulus E. In higher dimensions, this linear relationship between stresses and strains
is given via the elastic constitutive tensor field C, which depends linearly on E. The
transition from elastic to plastic deformation marks the initiation point, with the
stress at this juncture defined as the yield stress σys.

3.1.1 Strong Formulation

In the linear elasticity setting, the state equation (3.4), expressed through a PDE,
yields the displacement field u(ρ) : Ω → Rd as its solution, where ρ ∈ H denotes
a specific density configuration. This displacement field must satisfy the boundary
conditions applied to the design domain Ω. Specifically, the isotropic linear elasticity
problem [55],

Find the displacement field u(ρ) : Ω→ Rd such that:⎧⎪⎨⎪⎩
−div σ(u(ρ), ρ) = f in Ω

u(ρ) = 0 on ∂ΩD

σ(u(ρ), ρ) · n = g on ∂ΩN

(3.5)

is considered the state equation for all structural TO problems addressed in this thesis.
Here, σ(u(ρ), ρ) : Ω→ Rd×d and f : Ω→ Rd represent the second-order symmetric
Cauchy stress tensor field and the vector field of volumetric forces, respectively.
The outer boundary ∂Ω comprises two mutually disjoint subsets: the Dirichlet
boundary ∂ΩD and the Neumann boundary ∂ΩN . Adopting the prevalent approach
in linear elasticity, we exclusively focus on homogeneous Dirichlet conditions. Along
the Neumann boundary, we specify surface tractions g in alignment with the unit
outward normal n (see Figure 3.3 for an illustration).
For isotropic materials, the relationship between σ and u is governed by Hooke’s
law [56], i.e.,

σ(u(ρ), ρ) = C(ρ) : ε(u(ρ)) := λ(ρ) tr [ε(u(ρ))] Id + 2µ(ρ) ε(u(ρ)), (3.6)

ε(u(ρ)) = ∇Su(ρ) :=
1

2

(︁
∇u(ρ) + (∇u(ρ))T

)︁
,
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∂ΩD

∂ΩN

−g

Ω+ Ω−

f

Figure 3.3: Sketch of an elasticity problem: We consider a design space Ω = Ω+ ∪Ω−

with homogeneous Dirichlet boundary conditions on ∂ΩD and Neumann boundary
conditions on ∂ΩN , represented by normal tractions g. Volumetric forces are indicated
by a source term f .

where λ(ρ), µ(ρ) : Ω→ R>0 are the Lamé elasticity parameters of the material and
Id is the Rd×d-identity operator. ε is the symmetric strain tensor field and C(ρ) is
called the fourth-order elastic constitutive tensor field. For the definition of tensor
operators like the double dot product, trace and divergence of a tensor field, and the
Jacobian of a vector field, see Section 2.1.3.
Instead of using the Lamé parameters, Hooke’s law (3.6) can equivalently be expressed
in terms of Young’s modulus E(ρ) ∈ R>0 and Poisson’s ratio ν ∈ [0, 1/2) of the
material, with

λ(ρ) =
E(ρ) ν

(1− 2ν) (1 + ν)
and µ(ρ) =

E(ρ)

2 (1 + ν)
. (3.7)

Young’s modulus quantifies a material’s stiffness by representing the stress-strain
ratio during elastic deformation (see Figure 3.3). Poisson’s ratio characterizes a
material’s compressibility. A value of 1/2 signifies a perfectly incompressible scenario,
which we prohibit in this thesis. Note that from combining Equations (3.6) and (3.7)
it follows that C(ρ) is linear with respect to Young’s modulus E(ρ). Additionally, we
assume E to depend linearly on ρ. This leads to

C(ρ) = ρC+, (3.8)

where C+ represents the elastic constitutive tensor field for the stiff material, remain-
ing independent of ρ. The relationships between design variables like ρ and structural
responses determined by the laws of mechanics, like u, are commonly referred to as
sensitivities [57].
The predominant optimization objective in traditional TO involves minimizing the
compliance of designs. The compliance objective seeks an optimal arrangement of
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topology that enhances overall stiffness or minimizes the work applied to the structure.
Mathematically, we can express the compliance objective as

J (u(ρ), ρ) = ⟨u(ρ), f⟩, (3.9)

where ⟨·, ·⟩ denotes the inner product within the considered Hilbert space, such
as L2(Ω, Rd) or Rd. Some studies explore alternative optimization objectives, e.g.,
volume minimization accompanied by a stress constraint is notably discussed in the
literature [58, 59, 60, 61]. However, compliance minimization is dominant, presumably
due to its simple formulation and good practical results. Our research aligns with
this observation, revealing that the pursuit of compliance minimization frequently
yields structures that exhibit enhanced mechanical efficiency, demonstrating superior
stiffness and load-carrying capacity.

3.1.2 Variational Formulation

In order to obtain the variational formulation of the isotropic linear elasticity
problem, we multiply both sides of the PDE with a test function v ∈ U :={︁
v ∈ H1(Ω,Rd) ; v|∂ΩD

= 0
}︁

, integrate over the domain Ω and apply Green’s theorem.
We define vector-valued Sobolev spaces analogously to the scalar-valued case:

Definition 3.1.1. Let d, n ∈ N and Ω ⊂ Rd. Then the vector-valued Sobolev space
H1(Ω,Rn) is given by

H1(Ω,Rn) :=
{︁
u ∈ L2(Ω,Rn) ; ∂ju ∈ L2(Ω,Rn) (j ∈ {1, . . . , d})

}︁
.

The variational formulation of the linear elasticity problem (3.5) then reads as follows:

Find the displacement field u(ρ) ∈ U such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(u(ρ), v) = L(v) ∀v ∈ U ,
where

a(u(ρ), v) =

∫︂
Ω

∇Su(ρ) : C(ρ) : ∇Sv dΩ,

L(v) =

∫︂
Ω

fv dΩ +

∫︂
∂ΩN

gv dS

(3.10)



3.1. The Linear Elasticity Problem 21

property of the PDE solution operator’s kernel matrix structure
periodic BCs & const. coeffs convolutional kernel circulant

localized behavior off-diagonal decay banded
elliptic / parabolic off-diagonal low rank hierarchical

Table 3.1: Solution operators associated with linear PDEs can often be represented
as integral operators. Depending on the PDE, the solution operator’s integral kernel
has unique properties, which impose a certain matrix structure in the discretized
case [62].

3.1.3 Discretized Formulation

By using a discretization scheme like the FDM or FEM, the variational formula-
tion (3.10) can be reformulated in the following discretized problem formulation,

Find the nodal displacement vector û(ρ) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K(ρ)û(ρ) = F

where

K(ρ) =

∫︂
Ω

BTC(ρ)B dΩ,

F =

∫︂
Ω

NTf dΩ +

∫︂
∂ΩN

NTg dS

(3.11)

where K(ρ) is called the stiffness matrix of the system. For x ∈ Ω, the full displacement
field u(ρ) and its symmetric gradients ∇Su(ρ) are approximated using the nodal
displacements û(ρ) as follows

u(ρ)(x) = N(x) û(ρ)

∇Su(ρ)(x) = B(x) û(ρ)

where N and B are called the displacement shape function matrix and the strain-
displacement matrix, respectively.
Note that Equation (3.8) allows the following reformulation of the stiffness matrix:

K(ρ) =

∫︂
Ω

BTρC+B dΩ. (3.12)

As B, C+, and F remain unaffected by variations in ρ, they can be assembled
once for any given TO problem and subsequently be re-utilized for future density
changes. Further, subsequent calculations of the tensor products and solutions of the
linear system can be significantly accelerated by exploiting sparsity. The structure
of K(ρ) is inherited from the properties of the PDE (see Table 3.1). Since the PDE
for linear elasticity is elliptic and has localized behavior, the matrix has a banded
and hierarchical structure (see Figure 3.4 for a visualization of the typical matrix
structure arising in TO).
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Figure 3.4: Visualization of the typical sparse banded structure of the stiffness matrix
K(ρ). In the image, zero values are displayed in black, and non-zero values in white.

3.1.4 Solving the Linear System

In density-based TO, the computational burden primarily lies in solving the linear
system derived from the discretized PDE formulation (3.11). This computational
task often constitutes the most resource-intensive aspect of the numerical algorithms,
consuming as much as 97% of the total computational time [63]. In this section, we
will provide a brief overview of potential linear solvers employed to address this PDE.

Linear solvers can be categorized into iterative and direct methods. Iterative meth-
ods start with an initial guess and iteratively apply update steps until a specified
convergence criterion is met within a certain tolerance. Examples include Jacobi iter-
ation, Krylov subspace methods like GMRES [64] and the preconditioned conjugate
gradient method [65], as well as multigrid methods [66]. Direct solvers decompose a
matrix into a form that allows for a direct inversion. Standard direct methods include
UMFPACK [67], MUMPS [68], and traditional matrix decompositions like the LU,
Cholesky, and QR decomposition. The convergence rate of linear solvers usually
depends on the matrix’s condition number. To enhance convergence performance,
preconditioning is frequently employed on the matrix, aiming to reduce its condition
number substantially.

To ensure the effectiveness of any method for solving sparse linear systems, exploiting
the sparsity inherent in the system matrix is essential. Iterative techniques, like Krylov
subspace methods, excel in this aspect, relying on matrix-vector multiplication to
reach a solution. In contrast, incorporating sparsity into a direct method is typically
more intricate, necessitating a profound understanding of the inherent sparsity
structure within the specific problem [69].

As the number of degrees of freedom increases, the computational cost of direct
solvers also increases significantly, often leading to memory and processing time
limitations. In contrast, iterative solvers can be more efficient for large systems,
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especially if the coefficient matrix exhibits specific properties like sparsity. In the
work carried out for this thesis, we have found that for less than approximately 105

degrees of freedom, a sparse UMFPACK solver is efficient at solving sparse linear
systems. Beyond this range, iterative solvers are often more practical and scalable.

3.2 Methods

The field of TO has significantly developed since the seminal paper by Bendsøe and
Kikuchi [1] in 1988. Since then, TO has evolved in both theoretical exploration and
practical applications [70, 71, 72, 73]. Various literature surveys [74, 75, 76] have
comprehensively documented recent advancements and real-world applications of
TO.
Initially, TO has been regarded as a binary optimization problem, which is known to
be ill-conditioned in the context of structural compliance-related designs [77, 78]. The
primary challenge in this context lies in solving a large-scale integer programming
problem, where the high computing cost typically precludes the use of gradient-free
algorithms [79, 80]. In 1988, Bendsøe and Kikuchi [1] revolutionized the field by
introducing the homogenization approach. This approach transformed the identi-
fication of optimal topology into a size optimization problem, utilizing geometry
parameters as design variables to describe the microstructure of materials. While
initially promising, the homogenization method demanded extensive computational
resources and has gradually given way to alternative methods.
The TO problem described by Equations (3.1)–(3.4) has traditionally been tackled
using one of two methodologies: either through a density-based approach, exemplified
by SIMP or evolutionary methods, or as a boundary optimization problem, as seen
in level-set methods. These methodologies are commonly known as Eulerian (fixed
mesh) or Lagrangian (mesh follows the boundary) approaches [76].
In the following sections, we explore the SIMP method in Section 3.2.1, which stands
out as the predominant technique for TO. Additionally, in this section, we present a
proof for a novel insight, contending that the smoothed Heaviside function step within
the SIMP algorithm can be equivalently interpreted as a proximal mapping addressing
an optimization problem featuring a concave penalty function (see Theorem 3.2.1).
Subsequently, we give an overview of evolutionary approaches in Section 3.2.2 and
the level-set method in Section 3.2.3. Finally, in Section 3.3, we provide an evaluative
comparison of the proposed methods.

3.2.1 SIMP Method

Arguably, the most common class of classical approaches for TO are density-based
methods. Density-based methods aim to minimize the optimization objective by
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Figure 3.5: The SIMP power law ρp for different values of p. Compared to the linear
case p = 1, higher values of p lead to lower entries in the elastic constitutive tensor
C(ρ) for intermediate density values. This leads to a penalization of non-binary
densities for the overall stiffness.

directly adjusting the material’s density distribution ρ : Ω→ {ρmin, 1} over a dis-
cretized voxel grid on Ω. Here, values of 1 correspond to solid elements, and ρmin > 0

is a minimum density value representing void elements, with a typical choice being
ρmin = 10−3. A non-zero minimum density is required to prevent singularities in the
stiffness matrix [74]. Since the exploration of all possible density configurations for
even small numbers of elements (e.g., 1000) involves a prohibitively large number of
analyses (21000 ≈ 10301), density methods always resort to iterative approaches.
An essential consideration in density-based methods involves choosing a suitable
density interpolation scheme and penalization technique to represent ρ as a continuous
design variable, ρ(·) ∈ [ρmin, 1]. This offers significant advantages over a discrete
formulation, especially when dealing with a large number of variables, which is a
common scenario in TO [81]. With the choice of continuous density parameterization
comes the need to steer ρ towards a solid-void solution. This is typically accomplished
by using implicit penalization techniques, the most common of which is the solid
isotropic material with penalization (SIMP) method [82, 83, 84]. In the SIMP method,
intermediate density values are penalized via a power law when computing the
optimization objective,

C(ρ) = ρpC+, ρ(·) ∈ [ρmin, 1]. (3.13)

where C+ represents the elastic constitutive tensor for the stiff material (see Equa-
tion (3.8)). The exponent p controls the penalization of non-binary densities. For
p = 1, the compliance minimization problem is convex and, therefore, has a unique
solution [71, 85]. For the same objective, a choice of p > 1 penalizes intermediate
densities and favors binary solutions. The established choice of the SIMP exponent
is p = 3, which was first proposed by Bendsøe and Sigmund [71]. A higher value
of p yields more binary solutions, albeit at the expense of making the optimization
problem more challenging to solve (see Figure 3.5). Additionally, it exacerbates the
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Figure 3.6: Condition numbers of the stiffness matrix K(ρ) over the course of SIMP
iterations, on a problem from the disc complex dataset [86]. We can observe that the
linear system arising from the PDE for linear elasticity is highly ill-conditioned.

ill-conditioning of the stiffness matrix. Throughout SIMP iterations on an arbitrary
TO problem from the disc complex dataset [86], the condition number frequently
exceeds 1010, as depicted in Figure 3.6. From Equations (3.12) and (3.13) it follows
that the global stiffness matrix K(ρ) can be obtained via

K(ρ) =

∫︂
Ω

BTρp C+B dΩ.

Instead of employing the implicit SIMP penalization scheme, an alternative is to opt
for explicit penalization. This involves incorporating the term∫︂

Ω

ρ (1− ρ) dΩ

into the objective function [87, 88]. However, determining a suitable weighting factor
to ensure smooth convergence to binary designs proves challenging, leading to limited
popularity for this approach.
Algorithm 1 presents a pseudo-code implementation of the SIMP method. It is
essential to highlight that computing the gradient steps involves determining partial
derivatives ∂u/∂ρ through the PDE solver. However, the efficiency of this process can
vary depending on the specific implementation of the solver, and it may be consid-
erably slow or even impossible. A commonly employed solution is the application
of the adjoint method [89]. This method entails solving a single linear system to
compute the partial derivatives in each iteration, with the system matrix being the
adjoint of the forward pass. Consequently, the adjoint method allows for the efficient
calculation of sensitivities. For a deeper understanding of the adjoint method and its
application in differentiable physics, see [90, 91, 92].
An interesting alternative perspective on SIMP involves interpreting ρ as a probability
density, where ρ(x) denotes the likelihood of x ∈ Ω being occupied by material. Thus,
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Algorithm 1 Solid isotropic material with penalization (SIMP) method
Require: F , p, N ▷ Forces, SIMP exponent and #iterations
Initialize: ρ0 ▷ Start with an initial density distribution
for i = 0, . . . , N − 1 do

ρi ← project(ρi) ▷ Project density values into the unit interval
ρ̃i ← filter(ρi) ▷ Smooth densities to avoid checkerboard patterns
ρ̃i ← binarize(ρ̃i) ▷ Binarize using a smoothed Heaviside function
u, σvM = pde_solver(F, ρ̃pi ) ▷ Solve PDE for ρ̃i and exponent p

loss = criterion(F, u, ρ̃i) ▷ Evaluate optimization objective
ρi+1 ← gradient_step(ρi, loss) ▷ Update densities via gradient descent

end for
ρN ← project(ρN)
ρN ← filter(ρN)
ρN ← binarize(ρN)

return ρN ▷ Return final density distribution

by sampling from the Bernoulli distribution B, each sample s ∼ B(ρ) represents
a binary material distribution. Given that Es∼B(ρ)(s) = ρ, the conventional non-
probabilistic interpretation of SIMP emerges as the scenario where averaging is
performed over an infinite number of samples s. However, akin to the principles
of stochastic gradient descent, employing a finite number of samples enables a
Monte Carlo approximation of the expected value, thereby aiding in circumventing
local optimization minima. Notably, when considering only one sample, we obtain
binary material densities despite the continuous design variable represented by the
probability density ρ. To our knowledge, this probabilistic perspective on SIMP has
not been explored in the existing literature and represents an entirely novel approach.

Regularization in TO refers to controlling the density values or sensitivities to
prevent rapid oscillations of the density distribution. Most notably, a common
issue in density-based TO is mesh dependency, which concerns the phenomenon
that different discretization sizes result in different topologies. This may lead to
checkerboarding, which refers to the formation of adjacent solid-void elements arranged
in a checkerboard pattern (see Figure 3.7). The two primary methods of regularization
are filtering and constraint techniques.

Filtering methods are applied via direct modification of density variables or sensitivi-
ties, while constraint methods utilize localized or global-level constraints added to the
optimization problem. Standard constraint methods include adding a total variation
penalty term to the objective function [93, 94] and regularized penalty methods [94].
Filtering methods are widely regarded as the prevalent regularization technique
for TO, mainly due to their ease of application. Notable examples encompass the
sensitivity filter [95] and the density filter [96, 97], which modify either the sensitivity
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Figure 3.7: Checkerboard pattern in a solution obtained from the SIMP method. We
can avoid checkerboarding via regularization. Image from [98].

or the density value of an element based on the sensitivity or density of elements in
a localized neighborhood.

A basic consequence of filtering is the formation of gray transition material between
solid and void regions. Consequently, several binarization schemes have been devel-
oped to promote near-binary solutions via a smoothed Heaviside function Hλ, with a
steepening factor λ > 0 [99, 100, 101]. A common definition for Hλ is given by

Hλ : [0, 1] −→ [0, 1]

x ↦−→
tanh

(︁
λ
2

)︁
+ tanh

(︁
λx− λ

2

)︁
2 tanh

(︁
λ
2

)︁ , (3.14)

where higher values of λ correspond to steeper slopes. It is common to start with
a small value for λ and to increase λ throughout iterations to obtain crisp binary
solutions [93]. The advantage of the specific parameterization in (3.14) is that for
x ∈ [0, 1] the Heaviside approximation Hλ closely approximates the identity mapping
for small λ > 0, which is a well-suited initialization. In the following theorem, we
show that filtering with a smoothed Heaviside function is not only a heuristic method
but also has mathematical justification. To our knowledge, this constitutes a novel
finding that has not been investigated prior to this thesis.

Theorem 3.2.1. Let λ > 0 and let Hλ be the smoothed Heaviside function given
by (3.14). Then there exists a differentiable concave function fλ such that

Hλ(x) = proxfλ(x) := argmin
u∈[0,1]

(︃
fλ(u) +

1

2
∥u− x∥22

)︃
for all x ∈ [0, 1].

Proof. Let λ > 0 and x ∈ [0, 1]. The smoothed Heaviside function Hλ is bijective
and continuous and, therefore, continuously invertible, with the inverse given by

H−1
λ (u) =

1

2λ

(︃
λ+ 2 tanh−1

(︃
(−1 + 2u) tanh

(︃
λ

2

)︃)︃)︃
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Figure 3.8: Top: penalty functions fλ in the optimization objective 1
2
∥u− x∥22 + fλ

for different values of λ. Bottom: associated smoothed Heaviside functions Hλ that
are given by the respective proximal mapping Hλ = proxfλ

.

for u ∈ [0, 1]. Note that H−1
λ is differentiable and has the following derivative:

H−1′

λ (u) =
2

λ
·

tanh
(︁
λ
2

)︁
1− (2u− 1)2 tanh2

(︁
λ
2

)︁ ∈ (0, 1].

SinceH−1
λ −id is continuous there exists a differentiable function fλ with the derivative

f ′
λ(u) = H−1

λ (u)− u. Let gλ(u) := fλ(u) +
1
2
∥u− x∥22 and let u⋆ := Hλ(x). Then

0 = f ′
λ(u

⋆) + u⋆ −H−1
λ (u⋆)

= f ′
λ(u

⋆) + u⋆ − x

= g′λ(u
⋆).

The function fλ is concave but gλ is strictly convex, since

f ′′
λ (u) = H−1′

λ (u)− 1 ≤ 0 and
g′′λ(u) = f ′′

λ (u) + 1

= H−1′

λ (u) > 0

for all u ∈ [0, 1]. From the convexity of g, it follows that u⋆ = Hλ(x) is the unique
minimizer of gλ.

Theorem 3.2.1 shows that we can interpret the application of a smoothed Heaviside
function Hλ as a proximal mapping that solves an optimization problem with a
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concave penalty function fλ. The higher the value of λ, the more fλ punishes
intermediate densities. See Figure 3.8 for a visualization of fλ for different smoothed
Heaviside functions. Note that we employ non-convex penalization while maintaining
the convexity of the total cost function, similar to the convex-non-convex strategies
proposed by Lanza et al. [102].
The proof of Theorem 3.2.1 presents a concrete guideline for how to construct a
suitable penalty function fλ for a given value of λ > 0. In fact, we can obtain fλ by
integrating H−1

λ (u)− u which results in the rather complicated formula

fλ(u) =
1

λ

(︄
λu

(︃
1− u

2

)︃
+

cosh
(︁
λ
2

)︁
sinh

(︁
λ
2

)︁ (︃1

4
ln
(︁
2u2 + (2− 2u)u cosh(λ)− 2u+ 1

)︁
−1

2

√︄
cosh(λ)− 1

cosh(λ) + 1
arctanh

(︄
(2u− 1)

√︄
cosh(λ)− 1

cosh(λ) + 1

)︄)︄

+u arctanh
(︃
(2u− 1) tanh

(︃
λ

2

)︃)︃)︃
.

Finally, some theoretical convergence properties of SIMP have been discussed in the
literature [103, 104, 105]. For additional references concerning both the origins and
theoretical mechanisms behind the SIMP method, see [106, 107, 108].

3.2.2 ESO Method

The evolutionary structural optimization (ESO) method was first introduced by Xie
and Steven [109, 110, 111] based on similar ideas presented in [112, 113]. Over the
years, ESO has gained popularity due to its simplicity and ease of implementation.
Starting from a fully stiff design, voxel-wise sensitivities are calculated via a user-
defined rejection criterion, usually based on compliance (see Equation (3.9)) or von
Mises stresses [55, 114]. Elements with a low rejection criterion value are gradually
removed, leading to an optimized material configuration. This is summarized in
Algorithm 2.
ESO is considered a hard-kill method, i.e., removed elements are not included in
the subsequent PDE analyses. Consequently, no criterion function is computed for
the void elements. Unlike the SIMP method, ESO utilizes a discrete element design
variable, ρ(·) ∈ {0, 1}, to define binary topology layouts. This alteration in the
design variable may lead to convergence issues and a high dependency on the initial
configuration, often resulting in suboptimal solutions [115, 116]. Also, ESO is entirely
based on engineering heuristics and has no proof of optimality [117]. Despite these
challenges, ESO has been widely applied across various problem domains, including
structural [118, 119, 120], nonlinear [121, 122], thermal [123, 124, 125], and contact
problems [126, 127].
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Algorithm 2 Evolutionary structural optimization (ESO) method
Require: F , N , r ▷ Forces, #iterations and rejection ratio
Initialize: ρ0 ▷ Start with an initial density distribution
for i = 0, . . . , N − 1 do

u = pde_solver(F, ρi) ▷ Solve PDE for current densities
s = criterion(u, F, ρi) ▷ Calculate sensitivities based on rejection criterion
s← filter(s) ▷ Optional: Filter sensitivities
for each element j do

if sj ≤ rmin(s) then (ρi)j = 0 ▷ Remove elements with low sensitivity
end if

end for
ρi+1 ← ρi ▷ Update densities

end for
return ρN ▷ Return final density distribution

Addressing the limitations of the original ESO, the bi-directional evolutionary struc-
tural optimization (BESO) method [128, 129, 130] was introduced in 1999. BESO
extends ESO by allowing both the removal of inefficient elements and the concurrent
addition of new elements. New material is typically introduced in void areas near
elements with high criterion function values [128, 129, 130].

Efforts to alleviate mesh dependencies in hard-kill methods involve the application of
density regularization techniques [131, 132, 133], akin to those used in SIMP. However,
these approaches often fail to achieve convergent solutions. As an alternative to
hard-kill ESO/BESO methods, soft-kill approaches retain void elements as very soft
elements, allowing the computation of the criterion function throughout the entire
domain.

In modern BESO implementations, using a power law approach like in the SIMP
method is common, enhancing numerical stability and method potential [134]. In
this context, the design variable ρ(·) ∈ {ρmin, 1}, is modified with a penalization
factor p using the original SIMP material interpolation (3.13).

There have been attempts to analyze the convergence of ESO. For example, Tan-
skanen [114] has shown that ESO updates follow the same optimization path as a
form of the simplex algorithm would take. This type of analysis gives a theoretical
basis for ESO as an optimization algorithm. However, it does not address the fact
that it is using a linear programming method to optimize a nonlinear function. In
2013, Browne introduced a mesh refinement technique to reduce the nonmonotonic
convergence behaviour [117].
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3.2.3 Level-Set Method

The level-set method was originally developed as a mathematical tool for computing
the motion of interfaces in two or three dimensions [135, 136]. Many formulations
of level-set-based approaches have been proposed over the years since Haber and
Bendsøe [137] suggested its application to TO, e.g., [136, 138, 139]. In contrast to
density-based approaches, the optimal layout is implicitly defined by a scalar level-set
function (LSF) φ : Ω → R. This is achieved by representing the boundary of the
design by the zero-level iso-contour of the LSF [140, 141],

∂Ω+ = {x ∈ Ω ; φ(x) = 0} ,

where

Ω+ := {x ∈ Ω ; φ(x) ≥ 0} and
Ω− := {x ∈ Ω ; φ(x) < 0}

denote mutually disjoint subdomains of Ω that indicate the presence or absence of
material, respectively.
A structural optimization process can be described by introducing a pseudo time t

that represents the iterations in the optimization process. We can then express the
dynamic model as

∂Ω+(t) = {x(t) ∈ Ω ; φ(x(t), t) = 0} .

By differentiating both sides of φ(x(t), t) = 0 with respect to time and applying the
chain rule, we obtain the first-order Hamilton-Jacobi (HJ) equation

∂φ

∂t
(x, t) + v∇φ(x, t) = 0. (3.15)

In level-set-based TO, this PDE describes the motion of the material interface due to
a design velocity field v = dx/dt. Note that Equation (3.15) holds for each iso-contour
and, therefore, for all x ∈ Ω. As the outward normal to the zero-level contour relates
to the gradient of the LSF by n = −∇φ/|∇φ|, the HJ equation can be simplified as
follows [136],

∂φ

∂t
(x, t) + vn(x, t) |∇φ(x, t)| = 0, (3.16)

where vn = ⟨v, n⟩ denotes the normal velocity field and represents the sensitivity of
moving the interface in the normal direction n with respect to some form of merit
function. For example, in the case of unconstrained compliance minimization, the
normal velocity function can be written as vn = −∇Su : C : ∇Su on the traction-
free boundaries of the structure (see [142, 143] for a derivation). To account for
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design constraints, penalty formulations are typically used for constructing merit
functions [142, 144, 145]. In theory, the level-set approach leads to designs with
sharp and smooth edges, thus avoiding semi-dense elements like those observed in
the SIMP method. In practical applications, however, the LSF is usually mapped
to a discretized density distribution on a voxel grid using a Heaviside function. See
Algorithm 3 for a pseudo-code implementation of the level-set method.

Equation (3.16) can be discretized in pseudo time using explicit [142, 146], semi-
implicit [147, 148] or fully implicit schemes. Due to their algorithmic simplicity,
explicit methods, such as an Euler forward scheme, are frequently used. Using
an Euler forward scheme produces an update formula that can be employed to
progressively optimize a structure using an iterative approach [143],

φi+1 = φi − vn ∆t
⃓⃓
∇φi

⃓⃓
, (3.17)

where i denotes the current iteration, ∆t is a discrete time step, and vn is the discrete
velocity field normal to the boundary.

Although the iterative updating scheme in Equation (3.17) tends to converge to
smooth topologies, it may require many iterations. Nevertheless, it has been ex-
tensively investigated [138, 142, 146, 149] and applied to a broad range of design
problems, including structural problems [139], vibration problems [146, 150] and
thermal problems [151], among others.

Algorithm 3 Level-set method via a Hamilton-Jacobi equation
Require: F , N ▷ Forces, #iterations
Initialize: φ0 ▷ Start with an initial LSF
for i = 0, . . . , N − 1 do

u = pde_solver(F, φi) ▷ Solve PDE for current LSF
vn = vn(u, F, φ

i) ▷ Calculate normal velocity function
φi ← φi − vn ∆t

⃓⃓
∇φk

⃓⃓
▷ Update LSF based on HJ equation

end for
ρ← cutoff(φN) ▷ Obtain densities from LSF using a Heaviside function

return ρ ▷ Return final density distribution

A significant difference between density and level-set approaches lies in how gradients
are computed and how designs are updated. To ensure that the evolution of the LSF is
efficiently driven by the shape sensitivities, the gradients should be uniform along the
interface [152]. As the HJ equation (3.16) does not maintain uniform spatial gradients
of the LSF, re-initialization schemes are often used to prevent the spatial gradients
∇φ from becoming too steep or too flat along the interface [136, 138]. Furthermore,
since the LSF evolves only along interfaces that exist in the initial design, updating
the level-set function via the HJ equation does not allow for the creation of new holes
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in the material domain. To overcome this limitation, a hole nucleation algorithm
called the bubble technique [153, 154] was introduced in 1994. The basic idea is to
predict the influence of introducing an infinitesimal hole at any point in the design
domain and use this information to generate new holes. This influence is commonly
determined using topological derivatives [155]. The topological derivative T is a
measure of how an objective functional J changes when an infinitesimally small
spherical hole is introduced into the structure,

T (x) := lim
ε→0

J (Ω+ \B(x, ε))− J (Ω+)

|B(x, ε)|
,

where B(x, ε) is the ball of radius ε centered at x ∈ Ω+. In 2001, Garreau et al. [156]
gave specific formulations for the topological derivative of planar linear elasticity
equations.
It is also possible to nucleate new holes by adding a source term R to the HJ
equation. This is commonly done in combination with a diffusive term D that acts
as a regularizer, thus preventing rapidly oscillatory level-set fields and interface
geometries [76],

∂φ

∂t
(x, t) + vn(x, t) |∇φ(x, t)| − D(φ)(x, t)−R(φ)(x, t) = 0.

The diffusive term smooths the level-set field using a linear or nonlinear diffusion
model. In the linear case, e.g., D(φ) = div (∇φ), one can typically associate a
potential with the diffusive term which is minimized in the course of the updating
procedure [142, 157, 158].

3.3 Conclusion and Discussion

Common for the implementation of the different TO algorithms is that they use
an iterative procedure to create a complex mapping from problem-defining char-
acteristics (i.e., supports, loads, and objective function) to an optimized structure.
As the iterative process relies on repetitive analysis and design, the PDE for linear
elasticity (3.5) must be solved for the intermediate solution at each iteration of
these procedures. Especially for larger problems, obtaining this solution becomes
computationally expensive, presenting a significant challenge in large-scale topology
optimization.
Out of the proposed methods, SIMP is arguably the most common and most widely
used approach. This popularity can be attributed to several factors: first, SIMP is a
relatively straightforward and intuitive method. It is based on penalizing intermediate
densities, making it conceptually simple for engineers and practitioners to understand
and implement. This is a significant advantage over level-set methods, which require
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precise control of the level-set field, particularly the slope near the boundary. Various
techniques, such as velocity field smoothing, topological derivatives, and the necessity
for re-initialization, underscore the ongoing challenge of effectively managing the
level-set field. Furthermore, as most level-set methods employ smoothed Heaviside
functions, the crispness is lost when mapping the geometry onto a discretized voxel
grid.
Second, SIMP has been widely adopted and extensively studied, leading to the
development of efficient implementations in commercial software packages. SIMP
has demonstrated success in optimizing a variety of structures across different
engineering disciplines. Its performance and reliability in generating manufacturable
designs contribute to its continued popularity. Compared to SIMP, particularly
the ESO/BESO approaches have been criticized for failing in certain situations
pertaining to flaws in only making discrete density updates [108, 115]. Rozvany [108],
in a notable critique, highlighted the absence of a solid mathematical foundation for
ESO, leading him to advocate for SIMP in TO. A fundamental issue with discrete
ESO/BESO methods and their variants is the lack of algorithmic convergence and the
challenge of selecting a suitable stopping criterion. Typically, discrete optimization
methods face a common problem of being highly sensitive to parameter variations,
often resulting in oscillating and non-converging solutions. That makes it particularly
difficult to find parameters and update strategies that converge to good designs in
stable and efficient manners.
Third, as explored in Chapter 4, SIMP continues to maintain its prominence in the
modern era, mainly due to its seamless integration with deep learning methodologies.
The gradient-based update steps inherent in SIMP, combined with the voxelized
representation of densities, make it a natural fit for neural networks, further accen-
tuating its relevance and adaptability in contemporary engineering optimization
practices.



Chapter 4

Deep Learning for Topology
Optimization

The development of high-performance computing technology not only drives the
development of TO but also catalyzes significant progress in various scientific and
engineering domains. Machine learning (ML), in particular, has harnessed these
technological advancements. Up until now, ML has been successfully applied in
many mechanics-related fields, including but not limited to predicting mechanical
responses [159, 160, 161], solving multi-physics problems [162] and designing meta-
materials [163]. Furthermore, the rise of ML – especially deep learning (DL) – has
played a pivotal role in shaping innovative approaches to TO.
The integration of neural networks (NNs) with structural optimization is not a
new concept, with its origins dating back to the 1990s [164, 165, 166]. For example,
Kodiyalam and Gurumoorthy [166] utilized a two-layer feedforward network to
optimize the design of aircraft engine guide and satellite reflector assembly. However,
constrained by computing power limitations and the prevalence of traditional ML
methods, this combination of NNs and TO did not experience substantial research
momentum. Renewed interest in the field emerged in the 2010s, with pivotal works
being published by Ulu et al. [167] and Sosnovik and Oseledets [168] in 2014 and
2017, respectively.
Research combining DL and TO can be broadly categorized into three main cate-
gories [2]. The first category aims to learn the SIMP solution process by reducing the
required number of SIMP iterations or eliminating any classical iterations altogether.
The second category accelerates classical TO methods via DL by elevating the PDE
solution process, which is SIMP’s primary bottleneck. Lastly, an alternative approach
is to use NNs to reparameterize TO’s density field via an implicit representation,
e.g., using a deep image prior. In the upcoming sections, we will analyze all three
categories in detail. Subsequently, we will briefly discuss alternative approaches in
Section 4.4.

35
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Figure 4.1: Two different approaches for learning the SIMP solution process. (a) The
NN predicts an optimized structure for a given problem based on applied forces and
boundary conditions. (b) The network learns the density at SIMP iteration j based
on the density from a previous iteration i, effectively solving a deblurring task.

4.1 Learning the SIMP Solution Process

The first serious attempts of TO via DL aimed to reduce the number of SIMP
iterations or eliminate any iterative process altogether [167, 168, 169]. In 2014, Ulu et
al. [167] introduced a TO method based on ML, incorporating principal component
analysis for feature extraction and employing an MLP to map loading configurations
to optimized topologies. This work set a standard for ML-based TO. The second
pivotal work, conducted by Sosnovik and Oseledets [168] in 2017, pioneered the
application of CNNs in TO. They treated the TO problem as an image-to-image
regression task, training a U-Net model [32] to map from non-binary intermediate
structures at each iteration to the final optimized binary structure.

Both works learn the SIMP solution process via DL but represent two distinct
approaches (see Figure 4.1): Sosnovik and Oseledets [168] use DL to reduce the
number of SIMP iterations, which we call SIMP iteration learning. Ulu et al. [167]
go one step further and eliminate all classical iterations. We call this approach
end-to-end learning or direct learning.

Both approaches have different advantages and challenges. SIMP iteration learning
relies on the SIMP algorithm and still requires costly PDE solutions. Additionally,
the approach operates under the assumption that the density history during the
early stages of the optimization procedure adequately determines the nature of the
final result. This can be a problematic assumption for problem instances where parts
of the structure move during optimization.

On the contrary, end-to-end learning algorithms establish a surrogate model to
directly predict an optimal structure based on given design restrictions to achieve
iteration-free TO. As pointed out in [2, 3], this leads to faster inference times but
requires more training samples. By definition, such models cannot present the full
optimization path, which may lead to challenges regarding interpretability and
explainability of results. Further, they tend to suffer heavily from generalization to
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unseen cases. Nonetheless, the direct learning approach is currently one of the most
popular applications of DL in TO.

In 2018, Banga et al. [170] transferred the SIMP iteration learning framework to
three dimensions. Xue et al. [169] reduced the cost of SIMP iterations by solving
the PDE on a coarse grid using a classical solver. They then learn an upscaling
to increase the resolution of the solution. This idea has recently been investigated
further by [171, 172], who combine the approach with implicit representations (see
Section 4.3). Aside from the standard U-Net architecture [32], there have also been
experiments with other model types, including residual neural networks [173] and
deep belief networks [174], which employ feature detection to achieve dimensionality
reduction in each layer [175].

In 2019, Yu et al. [176] followed up on the end-to-end learning approach to directly
predict the final densities without performing any SIMP iterations. They used a
generative adversarial network (GAN) [177] as an additional post-processing step to
increase the resolution of their predictions (see Section 4.4.1 on generative models for
TO). Other publications that perform end-to-end learning for TO include [178, 179,
180]. The structural design representation is typically defined by element densities
within a regular mesh, similar to the conventional SIMP approach. Some authors base
their structural representation on geometrical features inspired by feature mapping
or moving morphable components techniques [181, 182].

While most DL approaches for TO are entirely oblivious to the underlying physics,
there is a small number of approaches that have started to include physics-inspired
properties into the training process: Banga et al. [170] and Rade et al. [183] augmented
the training dataset by including rotations and mirrors of given loads and boundary
conditions. In some works, additional inputs related to initial stress or strain [184, 185]
and displacements [179, 186] are included to give the network more information on
physical properties. To our knowledge, no literature incorporated the underlying
physics by modifying the architecture of the DL model itself.

In our publication SELTO: Sample-Efficient Learned Topology Optimization, we
employ an end-to-end learning approach and demonstrate that we can dramatically
improve sample efficiency, i.e., the model’s performance when trained on only
few training samples. Further, we facilitate geometric reasoning by restricting the
hypothesis space to group equivariant models (see Section 4.5), drastically improving
the prediction quality.

4.2 Learning a PDE Solver

The recent advancements of DL in computer vision [187, 188], natural language
processing [189, 190] and ecology [191] have caused a surge of interest in applying
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these techniques to scientific problems. The field of scientific machine learning, which
combines the approximation power of data-driven ML methodologies with traditional
modeling techniques based on PDEs, sets out to use ML tools for accelerating
scientific discovery. In the field of TO, the main bottleneck in classical iterative
approaches like SIMP is that each iteration requires solving the PDE for linear
elasticity. Due to this computational challenge, TO at high resolutions can take
hours, even days [192, 193, 194]. This inspired researchers to apply DL-based TO
methods to reduce or eliminate the need to solve PDEs via classical methods.
Scientific ML can roughly be categorized into three main areas: (i) learning a PDE
solution, (ii) learning a PDE solution operator, and (iii) PDE discovery.
Learning a PDE solution commonly entails incorporating the PDE directly into the
training process as constraints [195, 196, 197]. These constraints often stem from
prior knowledge and are typically incorporated into the loss function used during
training. Notable methods following this paradigm include physics-informed neural
networks (PINNs) [196, 198, 199, 200], the deep Ritz method (DRM) [201], and
the deep Galerkin method (DGM) [202]. PINNs have recently garnered significant
attention for their mesh-independency (see Section 4.3 on neural reparameterization
and implicit representations). Consequently, training does not involve discretized
grids, as traditional numerical methods do [199]. However, any alterations to physical
parameters, coefficients, or boundary conditions necessitate retraining, which is a
notable drawback when applied to TO.
On the other hand, operator learning via neural operators (NOs) [203, 204] aims to
approximate an unknown parameter-to-state operator, which often takes the form
of the solution operator associated with a PDE. NOs serve as approximators for
infinite dimensional parameter-to-state mappings. Two prominent instances of this
approach are the deep operator network (DeepONet) [205] and the Fourier neural
operator (FNO) [206], which we discuss in Sections 4.2.1.1 and 4.2.1.2, respectively.
Both methods have brought about significant advancements in the field of scientific
machine learning.
Finally, PDE discovery aims to solve the inverse problem of identifying the parameters
of a PDE from data. Instead of building models from physical laws, PDE discovery
aims to discover unknown physics and the corresponding equations directly from
limited observation data [207]. Early prominent examples include PDE-Find [208]
and PDE-Net [209], which involve specifying a collection of candidate library terms
f1, . . . , fm, each of which is a function of the PDE solution u and its spatial derivatives.
The goal is to find a sparse vector ξ that fulfills

ut = ξ1f1(u) + . . .+ ξmfm(u),

where ut denotes the time derivative of u. In PDE-Find and PDE-Net, derivatives are
numerically approximated using finite differences stencils, requiring the data to lie
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on a uniform spatio-temporal grid. A significant breakthrough came in 2021 with the
introduction of DeepMoD [210]. DeepMoD uses automatic differentiation [211] and
an implicit representation to calculate the partial derivatives of the NN, from which
it evaluates the library terms. Notably, the derivatives can be evaluated anywhere
in the problem domain, not just at the points where observational data is available.
Today, there exists a large number of PDE discovery algorithms [207, 212, 213, 214,
215, 216, 217], most of which still involve finding a sparse linear combination of
the differential terms within the specified library. Therefore, sparse regression is of
critical importance to PDE discovery [212]. In this thesis, we assume the structure of
the PDE is to be known, thereby excluding any further exploration of PDE discovery
at this point.

In the following, we start with a general introduction of NOs in Section 4.2.1, along
with a definition of DeepONets and FNOs in Sections 4.2.1.1 and 4.2.1.2, respectively.
After that, in Section 4.2.2, we discuss possible applications of learned PDE solvers
to TO and reason why we consider NOs a promising approach.

4.2.1 Neural Operators

In this section, we review the most common NO [203, 204] architectures used in the
literature, namely deep operator networks (DeepONets) [218] and Fourier neural op-
erators (FNOs) [206]. Operator learning has been successfully applied to many PDEs
from different fields, including fluid dynamics [219, 220], continuum mechanics [221],
astrophysics [222], quantum mechanics [206] and weather forecasting [223, 224]. For
an extensive survey of different NO architectures and their applications, see [225, 226].

NOs [203] aim to learn an infinite-dimensional mapping from a finite dataset of input-
output pairs. Let d, n,m ∈ N and Ω ⊂ Rd be bounded and closed. We formulate the
learning problem on real-valued Banach spaces A := A(Ω,Rn) and U := U(Ω,Rm),
with an operator G† : A → U mapping between these two spaces. Given an i.i.d.
sequence of data points {(ai, ui)}Ni=1 ∼ (A, U) with ui = G†(ai), the objective is to
approximate G† with a parameterized mapping Gθ : A → U with learnable parameters
θ.

NOs employ an iterative approach using a sequence of nonlinear operators Gi that
generalize the traditional dense layer given by Equation (2.1). The operators comprise
linear integral operations succeeded by point-wise nonlinearities. Specifically, for an
input function vi at the i-th layer, the computation of Gi : vi ↦→ vi+1 is defined by

Givi(x) := σ (Kθ(vi)(x) +Wvi(x)) ,

where Kθ is a linear operator parameterized by θ, W represents a linear transformation
and σ is an element-wise nonlinear activation function. We choose x ∈ Ωi, where
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Ωi ⊂ Rd is a bounded domain for all i with the initial domain given by the whole
design space, Ω0 = Ω.
It is common to choose Kθ to be a kernel integral transformation,

Kθ(vi)(x) :=

∫︂
κθ(x, y)vi(y) dy, (4.1)

with κθ being a NN parameterized by θ. Here, κθ serves as a learnable kernel function.
In this general form, approximating the kernels or evaluating the integral operators
could be computationally expensive. Hence, several NO architectures have been
proposed to overcome these challenges, such as DeepONets [218] and FNOs [206].
The main goal of employing NOs is to speed up the PDE solution process. This is
particularly relevant for complex systems that are computationally challenging to
simulate with traditional numerical PDE solvers. For instance, this situation may
arise for high-dimensional PDEs or fluid dynamics applications such as modeling
turbulent flows, which require very fine discretizations. Moreover, specific problems
in engineering require many evaluations of the solution operator. In these cases, a
fast but less accurate solver provided by operator learning may prove helpful in
forecasting or optimization.
NOs do not rely on a fixed discretization as they are mesh-free and parameterized
by a NN that can be evaluated at any point. This property makes them suitable
for solving PDEs on irregular domains or transferring the model to other spatial
resolutions [203]. Alternatively, NOs can be employed for parameter identification.
Once the solution operator has been approximated, it can be exploited in an inverse
problem framework to recover unknown parameters of the PDE, which may be
computationally challenging to perform with existing numerical PDE solvers.

4.2.1.1 Deep Operator Networks

Deep operator networks (DeepONets) [205, 218] are a promising class of NOs for
learning nonlinear operators and capturing the inherent relationships between input
and output functions. They extend the capabilities of traditional DL techniques by
leveraging the expressive power of the NNs to approximate operators in differential
equations, integral equations, or, more broadly, any functional mappings from one
function space to another. A key theoretical motivation for DeepONets are universal
operator approximation theorems [218, 227]. They can be seen as infinite dimensional
generalizations of standard universal approximation theorems for NNs [228, 229],
which guarantee that a sufficiently wide NN can approximate any continuous function
to any accuracy. Further, since the introduction of DeepONets, several research works
focused on deriving error bounds for the approximation of nonlinear operators in
various settings, such as learning the solution operator associated with Burger’s
equation or the advection-diffusion equation [230].
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Figure 4.2: Illustration of a standard DeepONet model [205, 218].

A DeepONet is a two-part network consisting of a branch network and a trunk
network (see Figure 4.2). The branch network encodes the operator’s input function
a into compact, fixed-size latent vectors b1(a(x1), . . . , a(xℓ)), . . . , bp(a(x1), . . . , a(xℓ)),
where {xi}ℓi=1 are the sensor points at which the input function a is evaluated. The
trunk network decodes these latent vectors to produce an approximation of the true
solution u at the location y ∈ Ω as

u(y) ≈ Gθ(a)(y) =
p∑︂

k=1

bk(a(x1), . . . , a(xℓ)) tk(y).

The defining feature of DeepONets is their ability to handle functional input and
output, thus enabling them to learn a wide array of mathematical operators effectively.
It is worth mentioning that the branch and trunk networks can have arbitrary and
distinct NN architectures tailored for different purposes. Moreover, while the interplay
of the branch and trunk networks is crucial, the output of a DeepONet does not
necessarily depend on the specific input points but rather on global properties of
the entire input function, which makes it suitable for learning mesh-independent
operator maps.
One reason behind the performance of DeepONets might be their connection with the
low-rank approximation of operators and the singular value decomposition (SVD).
Herein, one can view the trunk network as learning a basis (or, more accurately,
a generating system) of functions {tk}pk=1 that are used to approximate the oper-
ator. The branch network expresses the output function in this basis by learning
the coefficients {bk}pk=1. Moreover, the branch network can be seen as a model re-
duction method, which encodes the input function into a compact representation,
thus reducing the problem’s dimensionality to p, where p is the number of branch
networks. Additionally, several architectures, namely the POD-DeepONet [231] and
SVD-DeepONet [232] have been proposed to strengthen the connections between
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Figure 4.3: Illustration of a standard FNO model [203, 206].

DeepONets and the SVD of the operator.

A desirable property of NNs is discretization invariance, i.e., the model can act
on any discretization of the source term and be evaluated at any point of the
domain [203]. This property is crucial for the model’s generalization to unseen data
and the transferability of the model to other spatial resolutions. While DeepONets
can be evaluated at any location of the output domain, they are not discretization
invariant in their original formulation, as the branch network is evaluated at specific
points of the input domain. However, this can for instance be resolved by fixing
the set of points on which the input function is evaluated independently of its
discretization [203] or by sampling the input functions at local spatial averages [233].

DeepONets have been successfully applied and adapted to a wide range of prob-
lems, including predicting cracks in fracture mechanics [234] and predicting linear
instabilities in high-speed compressible flows with boundary layers [235].

4.2.1.2 Fourier Neural Operators

Fourier Neural Operators (FNOs) [203, 206] are a class of NOs that are motivated
by Fourier spectral methods. They have demonstrated significant success in learning
and predicting solutions to various PDEs, particularly those with periodic boundary
conditions. This capability renders FNOs an invaluable tool in areas where PDEs play
a central role, such as fluid dynamics, quantum mechanics, and electromagnetism.

The main idea behind FNOs is to choose the kernels κθ in Equation (4.1) as
translation-equivariant kernels that satisfy κθ(x, y) = κθ(x − y). For x ∈ Ωi we
then obtain

Kθ(vi)(x) = (κθ ∗ vi)(x), (4.2)

which in many PDE-related applications is a natural choice from the perspective of
fundamental solutions [236]. FNOs efficiently parameterize the kernel function κθ
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by exploiting the Fourier space representation of vi. From Equation (4.2) and the
convolution theorem we derive

Kθ(vi)(x) = F−1 (F(κθ) · F(vi)) (x),

where F denotes the Fourier transformation, which can be efficiently calculated
using the Fast Fourier Transform (FFT). For an illustration of an FNO layer, see
Figure 4.3.

Assuming periodicity of κθ, a Fourier series expansion yields discrete Fourier modes.
By truncating the series to a maximum of kmax modes, F(κθ) is directly parameterized
as a learnable weight tensor with kmax channels. This truncation acts as a low-pass
filter, leading to relatively smooth outputs [237]. If the input domain is discretized
uniformly with ℓ sensor points, and the vector F(κθ) contains at most kmax < ℓ

modes, the convolution can be executed with quasi-linear complexity in O(ℓ log ℓ)
operations using the FFT [62]. This represents a noteworthy enhancement compared
to the O(ℓ2) operations needed to compute the integral in Equation (4.2) using a
quadrature rule. In practical scenarios, by limiting the number of Fourier modes to
kmax ≪ ℓ, one can often achieve a satisfactory approximation accuracy, especially
when the input and output functions are smooth, leading to rapid decay of their
coefficients in the Fourier basis.

While FNO is fast and accurate, it has limitations on the input format and the
problem domain. Since FNO is implemented using the FFT, it can only easily be
applied on rectangular domains with uniform meshes. In the case of irregular domain
shapes, it is possible to define embeddings into larger rectangular domains [231].
However, this is less efficient and wasteful, especially for highly irregular geometries.
Similarly, if the input data is in the form of non-uniform meshes such as triangular
meshes, several works have been proposed to extend the FNO architecture to more
general domains [231, 238, 239, 240]. This can, however, cause significant interpolation
errors, especially for nonlinear PDEs.

Similarly to DeepONets, FNOs are universal approximators, in the sense that they
are dense in the space of continuous operators [203, 241, 242]. However, despite
being universal approximators, NOs could theoretically require a huge number of
parameters to approximate a given operator to a prescribed accuracy ε > 0. As
an example, [243] showed that the size of NOs must grow exponentially fast as ε

decreases to approximate any operator between functions whose Fourier coefficients
decay only at a logarithmic rate. Fortunately, these pessimistic lower bounds are not
observed in practice when learning solution operators associated with PDEs [242].
In practical comparisons FNOs often show a better cost-accuracy trade-off than
DeepONets regarding the required number of training samples and network size [244].
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Figure 4.4: Example of a learned PDE solver for TO. The NN takes the current
density and relevant problem specifications as input and generates the corresponding
displacements as output.

4.2.2 Application to Topology Optimization

The primary computational bottleneck in classical TO lies in the repeated solution
of the PDE for linear elasticity. There has been a growing interest in leveraging
learned surrogate models for traditional numerical solvers to address this challenge.
In practical terms, the objective is usually not to enhance prediction quality but
rather to speed up the computational process. This results in a trade-off between
speed and accuracy that requires careful balancing.

Learned surrogate models have been widely adopted in structural mechanics for
predicting mechanical responses [245, 246, 247]. Recent efforts have been made to
incorporate the PDE for linear elasticity as a constraint within the loss function, akin
to the methodology used in PINNs [248, 249, 250, 251]. However, a common limitation
in these approaches is the need for retraining or transfer learning when modifying
input parameters, such as loads, boundary conditions, and material properties.
Recent publications have addressed this limitation using DeepONets [252, 253] and
FNOs [238].

The aforementioned literature solves the PDE for linear elasticity without a direct
connection to TO. Notable exceptions are [254, 255], who employ PDE learning as
a direct part of the TO pipeline using PINNs and DeepONets, respectively. Both
papers employ a dual-model approach, with a primary network calculating a material
density at an arbitrary spatial coordinate and a secondary network determining
the stresses or displacements at that point. Hence, the authors combine learning
the PDE solver with an end-to-end learning approach (see Section 4.1) and neural
reparameterization (see Section 4.3). Similarly, some authors [256, 257, 258] employ
a more direct approach by replacing the sensitivity and objective computation with
a NN.

As explored in Sections 4.1 and 4.6, end-to-end learning approaches often face
challenges due to the requirement for extensive training data and limitations in
generalization. An alternative and potentially more promising strategy involves
substituting SIMP’s traditional PDE solver with a NN, eliminating its primary
computational bottleneck and contributing to faster optimization (see Figure 4.4). It
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is important to note that the unique requirements of SIMP influence our choice of
NO models. SIMP operates on a fixed voxel grid, making convolution and FNO-based
models a natural fit. This rationale explains why we do not further investigate using
DeepONets for SIMP, as these models explicitly avoid a fixed-grid voxel representation
of the design domain.
Expanding the training dataset to encompass intermediate SIMP densities provides
the advantage of acquiring a more extensive collection of training samples with diverse
characteristics. Consequently, data generation is often more cost-effective than for
direct design models, presenting an opportunity to naturally capture greater input
diversity. However, incorporating SIMP into the DL pipeline introduces an additional
challenge. Not only must the solution of the PDE be accurately determined, but also
the sensitivities that guide SIMP’s iterative density updating scheme. Researchers
have tackled this challenge in recent literature by training a secondary network
that produces sensitivities for the primary network, as demonstrated by Qian and
Ye [259] and Lunz et al. [260]. Nevertheless, exploring methods for obtaining accurate
gradients without employing a secondary network seems more desirable and less
cost-intensive.
In our publication Equivariant Neural Operators for Gradient-Consistent Topology
Optimization, we present the innovation of applying NOs to SIMP. We introduce and
compare different FNO architectures as surrogates for SIMP’s PDE solver and show
that enforcing group equivariance (see Section 4.5) drastically improves the quality
of predictions. We employ a novel loss summand that enforces correct sensitivities
for the SIMP updating scheme without using a dual-model approach. Further, we
demonstrate that without this loss summand, learned PDE solvers fail entirely
when incorporated into an iterative gradient-based optimization routine like SIMP.
This presents an important finding since it demonstrates that merely learning an
accurate PDE surrogate model is insufficient in real-world applications involving
gradient-based optimization.

4.3 Neural Reparameterization

The goal of reparameterization for TO is to represent a structure via an implicit
representation. For classical reparameterization methods like the level-set method
(see Section 3.2.3) and topology description functions (see Section 4.3.2), the new
representation often requires fewer design variables, thereby reducing the computa-
tional load of the optimization procedure. Today, reparameterization is commonly
achieved using NNs in what is called neural reparameterization, most notably used
in neural radiance fields (NeRFs) [261] and deep image prior (DIP) [262, 263] ap-
proaches. The typical approach involves constructing a network as a direct surrogate
for the optimization process, where training the network is equivalent to solving the
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Figure 4.5: 3D representations are categorized according to their discretization of
the output space. Image from [264].

optimization problem. This is realized by interpreting the network parameters as the
new design variables of the problem.

In the following, we introduce implicit neural representations in Section 4.3.1, followed
by the application to TO in Section 4.3.2.

4.3.1 Implicit Neural Representations

In contrast to conventional grid-based approaches, implicit neural representations
(INRs) [265, 266, 267, 268, 269] (also referred to as neural fields or coordinate-based
NNs) offer a continuous and differentiable framework for signal recovery [270]. An
INR is a NN representing a function x ↦→ y that maps a spacial coordinate x to
a quantity y. INRs are a novel research field that utilizes NNs to create approx-
imate representations of surfaces or shapes. INRs have primarily been employed
for reconstructing continuous surfaces from unstructured and incomplete 3D point
clouds. They have rapidly gained prominence in diverse domains, such as medical
imaging [271], computer graphics [261, 272], and robotics [273] and offer a unique
approach to encoding complex data. INRs have seen widespread success in represent-
ing and generating a variety of signals, including shapes [264, 265, 274], scenes [261],
images [275] and videos [269].

Based on their output format, NN-based representation methods can be broadly
classified into discrete-form and continuous-form approaches. Before the emergence
of INRs, shape and surface representations were predominantly in discrete forms,
exemplified by point-based [276, 277], voxel-based [278], and mesh-based [279, 280]
methods. In contrast to representation methods utilizing discrete forms, INRs dispense
with the need for voxel or mesh discretizations. Further, compared to discrete
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Figure 4.6: Neural reparameterization for TO. The NN receives a 3D coordinate
pair x, y, z as input and outputs the corresponding density at that specific location.
Therefore, the NN serves as an INR for the density field.

representations, INRs are significantly more memory-efficient while providing higher
fidelity, continuity, and analytic differentiability. Implicit representations effectively
embody advantageous properties of NNs, including compactness and smoothness [281].
These attributes theoretically enable achieving continuous infinite-resolution function
representations in a mesh-free manner. Outcomes of different data representation
methods based on NNs are shown in Figure 4.5.
There have recently been substantial efforts to improve INRs. For instance, it has
been found that the traditionally popular ReLU activation function fails to represent
features in the high-frequency domain well [282], leading to several improvements in
network architectures. This includes sinusoidal activation functions introduced in
SIREN [269], wavelet transforms like WIRE [283], and a mixture of sinusoidal and
exponential activations in TRIDENT [284].

4.3.2 Application to Topology Optimization

Researchers have explored new approaches involving DL to overcome the limitations
associated with data-driven TO. One such paradigm involves neural reparameteriza-
tion via INRs, which can be applied in various ways.
Typically, the NN takes the input coordinates (x, y, z) of a point within the design
domain and generates the density value ρ(x, y, z) at that specific location (see
Figure 4.6). Alternatively, an INR could output the value of the signed distance
function (SDF) for the same point. The SDF defines the distance from a given
spatial point x to the nearest surface, with the sign indicating whether the point is
inside (negative) or outside (positive) of the boundary surface [265]. Consequently,
a surface can be implicitly represented by the zero cut-off level of the SDF. Since
the INR can be assessed at any point, the derivation of the density distribution is
completely mesh-independent. This characteristic leads to the designation of neural
reparameterization approaches as being of infinite resolution.
While neural reparameterization via SDFs shares similarities with the level-set method
introduced in Section 3.2.3, it should be noted that INRs do not rely on the solution
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of the HJ equation (3.16). See [285, 286] for an explanation of similarities and
differences between INRs and traditional level-set methods.

In 2004, De Ruiter and Van Keulen proposed a TO method utilizing topology
description functions (TDFs) [285]. The core idea involves a function f : Ω → R,
which is defined by a set of basis functions hi,

f(x) =
N∑︂
i=1

hi(x).

The parameters affecting the properties of this set of basis functions are the design
variables for TO. For instance, when employing a Gaussian probability distribution
for constructing the TDF, the design variables are the height and width of each
kernel function [285]. Subsequently, the assignment of material for a given point x

hinges on the application of a Heaviside function with a predefined cut-off level c ∈ R;
specifically, if f(x) > c, the point x is designated as solid. The TDF approach has
recently been developed further by Zhang et al. [287], who employ a NN with periodic
activation functions for f , similar to the SIREN network proposed by Sitzmann et
al. [269].

In 2019, Hoyer et al. [288] introduced a physics-driven neural reparameterization
framework using a DIP [262, 263] for TO. While Hoyer et al. [288] map latent
vectors to discrete grid densities, Chandrasekhar and Suresh [289] use MLPs to
learn continuous INRs that map spatial locations to density values. Deng and
To [290] present a reparameterization approach similar to that of Chandrasekhar and
Suresh [289] but with an increased focus on enabling the representation of detailed
3D geometries. Further, Zhang et al. [2] and Jeong et al. [291] incorporate physics
information into the loss function based on PINNs [196]. In 2024, Berzins et al. [292]
introduced geometry-informed NNs, which learn an INR for TO solely based on
optimization constraints and without the need for training data, akin to PINNs.
Notably, the authors introduced a novel differentiable loss term that promotes the
connectedness of structures, drawing inspiration from Morse theory [293]. Other
recent examples of continuous INRs applied to TO include [294, 295].

It should be noted that, despite their mesh-independent nature, physical response
analysis of the structures generated by neural reparameterization still requires the
solution of the PDE for linear elasticity. If a classical solver is used, like FDM
or FEM, this imposes a fixed grid discretization of the domain. However, unlike
traditional grid-based TO, this mesh discretization is only used to solve the PDE
and is completely decoupled from the design variables of the optimization problem.
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4.4 Other Approaches

In this section, we investigate other approaches at the intersection of DL and TO that
do not fit into any of the categories discussed above. This includes generative models
and approaches for reinforcement learning. For an in-depth review of generative
models in engineering design, see [296].

4.4.1 Generative Models

The network architectures discussed in this chapter are mainly geared towards
discriminative supervised training for tasks like regression or classification with known
output features. In contrast, generative models focus on understanding an underlying
data distribution. The most straightforward application of generative models in
computational mechanics is generating new data based on existing examples.
The variational autoencoder (VAE) [297] is an example of a generative model class,
which seeks to efficiently represent data by compressing it into a latent vector and
then decoding it back to its original format. Although it shares an encoder-decoder
structure with the standard U-Net model [32], the VAE’s primary objective is effective
dimensionality reduction. Trained VAEs enable the generation of new data instances
by sampling in the latent space and applying the decoding process [298]. Hence, the
latent vector operates as the new design parameter [299, 300]. One major drawback
of VAEs is that they often yield blurry samples when generating new data due to
their learned average data representation in the latent space.
Generative adversarial networks (GANs) [177] take a different approach, pairing a
generator network with a discriminator in a min-max game. The generator strives
to enhance its ability to create realistic data samples, mimicking the available
training data, while the discriminator learns to distinguish between generated and
real input samples. GANs can be applied to generate structures optimized for
specific objectives, with the generator crafting plausible layouts and the discriminator
flagging inappropriate ones. The generator can then be used within a framework for
diversifying given design options [176, 184, 301, 302, 303].
Other noteworthy generative models include normalizing flows [304, 305] and diffusion
models [306]. While a small number of publications exist on diffusion models for
TO [307, 308], to our knowledge, no publications address normalizing flows in the
context of TO.

4.4.2 Reinforcement Learning

Reinforcement Learning (RL) [309] is a strategy for discovering optimal policies for
selecting a sequence of actions that guide a system’s evolution from an initial state
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to a predefined goal. The learning process employs a reward-punishment framework,
where the quality of an action is assessed through a designated loss function. Unlike
unsupervised learning, RL necessitates the definition of possible system states and
actions in advance.

RL is particularly valuable in two situations. First, it may be helpful in cases where
differentiable physics is not feasible, as, for example, in crash simulations [310].
Second, it is a natural fit for optimization tasks that can be conceptualized as
Markov decision processes, such as binary optimization of trusses using evolutionary
strategies [311] (see Section 3.2.2 on the ESO method). In this context, the system
states represent truss structures composed of voxel elements. Possible actions involve
removing specific voxel elements, and the reward or punishment is determined by
whether the chosen action results in a constraint violation. The objective is to
iteratively eliminate structural elements to achieve an optimized structure that
adheres to constraints. The trained model guides the selection of structural elements
to remove at each iteration [3]. This learning strategy can also be employed to explore
the design space by choosing different parameter settings for SIMP or ESO [312, 313].

Currently, RL in TO faces significant challenges due to the necessity of addressing
large-scale combinatorial optimization problems. In the presence of differentiable
solvers, gradient-based methods are still state-of-the-art [81] and generally preferred
over RL methods [314].

4.5 Equivariant Neural Networks

An enduring challenge in many DL methods for TO lies in effectively incorporating
physical information into the model pipeline. A viable strategy to infuse DL models
with enhanced physical insight is to impose global properties that align with the
expectations of a physically accurate predictor. Specifically, a correct model should
demonstrate behavior such that reflecting or rotating the TO problem results in
corresponding reflections or rotations in the solution, a property referred to as
equivariance. Unfortunately, standard NNs do not inherently exhibit this type of
behavior. The direct incorporation of such knowledge into the model pipeline can
significantly improve the learning process by freeing up capacity for other factors of
variation [315]. This section presents a mathematical definition of equivariance and
subsequently explores its integration with NNs.

Equivariance is the property of a function or operator to commute with the actions of
a symmetry group that acts on both its domain and range. For a given transformation
group G we call an operator G : A → U (G-)equivariant if and only if

G(TA
g [a]) = T U

g [G(a)] ∀g ∈ G, a ∈ A, (4.3)
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where TA
g and T U

g denote linear group actions in the corresponding spaces A and
U [39]. In simpler terms, when transforming an input function a ∈ A by a group
transformation g ∈ G and passing it through G, the result should be the same
as first applying G to a and then transforming the output G(a). Convolutional
operators are inherently equivariant with respect to translations. By appropriately
choosing G, we can additionally enforce equivariance with respect to any desired
group transformation.
As G is a group, it includes an identity transformation and a unique inverse g−1 for
each g ∈ G. Thus, we can restate the initial equivariance condition (4.3) as

G(a) = T U
g−1

[︁
G
(︁
TA
g [a]

)︁]︁
.

This reformulation facilitates the implementation of equivariance through a technique
known as group averaging [316, 317]. Based on group averaging, we can define an
equivariance wrapper GG as

GG(a) := 1

|G|
∑︂
g∈G

T U
g−1

[︁
G(TA

g [a])
]︁
.

GG is equivariant with respect to the transformation group G since it satisfies

T U
h−1

[︁
GG
(︁
TA
h [a]

)︁]︁
=

1

|G|
∑︂
g∈G

T U
gh−1

[︁
G
(︁
TA
gh [a]

)︁]︁
=

1

|G|
∑︂
gh∈G

T U
g−1

[︁
G
(︁
TA
g [a]

)︁]︁
=

1

|G|
∑︂
g∈G

T U
g−1

[︁
G
(︁
TA
g [a]

)︁]︁
= GG(a)

for all g, h ∈ G.
The prevalent approach for enforcing group equivariance in DL involves ensuring
invariance of the network’s convolutional filters and activation functions [39]. However,
employing group averaging offers several advantages. It is easy to implement, and its
plug-and-play nature allows seamless application to any finite transformation group
G and any model f . Notably, this flexibility permits direct comparisons between
non-equivariant models and their equivariant counterparts.
For our applications, natural choices of transformation groups are the dihedral
symmetry group D4 and the octahedral symmetry group Oh, describing combinations
of 90◦ rotations and reflections in R2 and R3, respectively. Thus, the equivariance
wrapper applies 8 transformations in the D4 and 48 in the Oh case. Notably, group
actions on vector fields impact spatial locations and vector directions, making
equivariance wrappers particularly suitable and flexible.
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Enforcing group equivariance via an equivariance wrapper differs fundamentally from
data augmentation, where the dataset is augmented with rotations and reflections.
While augmentation averages over the objective, the wrapper averages over the model.
This distinction endows the wrapper with several advantages, particularly that the
model does not need to learn equivariance since it is hard-coded. Consequently,
the wrapper is not only approximately equivariant but exactly so, even for out-of-
distribution inputs that differ significantly from the training data.
Since 2023, only a handful of publications employ equivariant DL for PDE learn-
ing [318, 319, 320, 321]. To our knowledge, we are the first to apply equivariant
networks to TO. In both our publications SELTO: Sample-Efficient Learned Topology
Optimization and Equivariant Neural Operators for Gradient-Consistent Topology
Optimization, we were able to show that by enforcing group equivariance, we can
drastically improve the sample efficiency of our models, i.e., reduce the required
number of training samples.

4.6 Conclusion and Discussion

In the past few years, there has been a growing trend in publications utilizing
DL frameworks to reduce the computational costs of TO. Many of these proposed
frameworks draw inspiration from the analogy between element-based material
distributions and images, building on advancements in DL for pattern recognition
and image analysis. Despite the increased attention, substantial progress remains
elusive. The existing body of literature reveals various dead ends, where opaque
presentations of results exaggerate the potential of model architectures, setting
unrealistic expectations. Some works treat NNs as enigmatic black boxes with
seemingly superhuman capabilities, disregarding well-established limitations in the
field of DL [3]. The notion of achieving iteration-free end-to-end TO through DL is
particularly prominent but becomes problematic when models are oblivious to the
underlying physics. Moreover, the cost associated with producing high-resolution
training samples and the increased computational complexity linked to meshes at
higher resolutions are determining factors influencing why most studies limit their
scope to 2D low-resolution meshes [180, 322, 323]. This contrasts with classical
state-of-the-art TO methods employing 3D meshes with up to two billion voxel
elements [194].
As an additional hindrance, many papers in the field do not present performance
metrics that allow for a fair and quantifiable comparison of results. Various reasons
contribute to the inadequacy of the presented results for assessment. First, many
studies showcase results for only a select few problems from the test set without
showing metric scores averaged over all test samples. Second, the choice of performance
metrics often focuses solely on voxel-wise density errors, neglecting to assess the
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actual structural performance of the obtained designs. Finally, the comparison to
conventional benchmarks is often skewed. Many works compare gray-scale results
obtained by their models to binary structures obtained by SIMP with a large filter
radius. This comparison is not representative, as compliance significantly worsens
when designs are thresholded to a solid-void design (see [3] for further explanations).
Moreover, a large filter radius results in structures with fewer fine features, potentially
impacting the structural performance of the design.
Due to a potentially high time investment required for training and the necessity
of sufficient training data, employing DL for TO is particularly advantageous in
two main scenarios. First, it proves beneficial when dealing with numerous similar
components that require individual optimization, as seen in aerospace engineering,
where optimizing thousands of mounting brackets for a single space rocket is essential.
In such instances, the significance of sample-efficient models cannot be overstated,
as they reduce the required number of training samples. Second, DL becomes
advantageous when the training process can be delegated to periods outside regular
working hours. Despite potentially lengthy training times, models can be trained
without constant supervision, such as over the weekend. This offers a more efficient
alternative for engineering companies compared to the intermittent waiting periods
inherent in classical SIMP methodologies during engineers’ regular working hours.
Finally, another notable shortcoming in the field stems from an insufficient research
infrastructure. This is particularly based on two crucial aspects:

1. The absence of publicly available 3D TO datasets. This is problematic for
several reasons. First, it is hard to reproduce other published results. Second, it
requires each researcher to generate their own datasets, which is time-consuming
and computationally demanding. Lastly, the lack of established benchmark
datasets impedes the comparability of results throughout the community.

2. The absence of an open-source code base that is both reliable and flexible.
Existing libraries for TO are either integrated into commercial frameworks
or suffer from severe limitations and an unintuitive non-modular implementa-
tion [324]. Furthermore, we are unaware of any library for TO that allows easy
integration with NNs in Python.

Our research efforts have addressed many of the critical points discussed above. First,
we have released two 3D TO datasets, namely the disc dataset and sphere dataset,
comprising nearly 10, 000 samples of mechanical mounting brackets. The datasets
are publicly accessible on Zenodo [86], and our publication SELTO: Sample-Efficient
Learned Topology Optimization provides a comprehensive introduction and analysis.
Second, we have introduced DL4TO (short for deep learning for topology optimiza-
tion), a Python library for 3D TO based on PyTorch [211]. DL4TO facilitates easy
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integration with NNs, enabling research at the intersection of TO and DL. The library
includes features addressing classical TO, such as a custom FDM solver for linear
elasticity and an implementation of the SIMP algorithm for various objective func-
tions. The SIMP implementation utilizes PyTorch’s automatic differentiation [211]
and employs the adjoint method for efficient backpropagation. Regarding DL for TO,
the library provides a framework for learned TO with any NN architecture built in
PyTorch [211]. Further, it supports our datasets mentioned above [86] and the simple
generation of custom datasets. In our conference paper DL4TO: A Deep Learning
Library for Sample-Efficient Topology Optimization, we introduced the library to an
international audience and provided practical use cases. To date, DL4TO has been
cloned by over 300 unique researchers worldwide.
Finally, we have published two papers that aim to reduce the dependency on large
training datasets via equivariant DL. In SELTO: Sample-Efficient Learned Topol-
ogy Optimization, we apply a physics-inspired end-to-end learning approach to TO.
Further, in Equivariant Neural Operators for Gradient-Consistent Topology Opti-
mization, we compare different FNO architectures to replace SIMP’s PDE solver.
Both publications showed that enforcing group equivariance and adding physical
information into the learning pipeline can drastically improve sample efficiency.
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(a) disc simple (b) disc complex (c) sphere simple (d) sphere complex

Figure 1: Ground truth examples from the SELTO disc and sphere dataset [1]. The densities are
defined on a voxel grid and are smoothed for visualization purposes using Taubin smoothing [4].

A Benchmark Dataset for Deep Learning for 3D Topology Optimization

The SELTO datasets [1] represent voxelized 3D topology optimization (TO) problems and solutions.
They contain almost 10.000 three-dimensional TO problems and associated ground truth densities.
The ground truths have been generated in cooperation with the Ariane Group1 and Synera2 using the
Altair OptiStruct3 implementation of SIMP within the Synera software.

The SELTO datasets comprise two distinct 3D datasets for TO, called disc and sphere, with the
names referring to the shape of the respective design spaces. Both datasets can be split into subsets
with load cases of one or two points of attack. We call these subsets simple and complex, respectively.
All subsets are further split into a training and a validation dataset. For examples of ground truth
densities see Figure 1. The SIMP method does not always provide a physically plausible solution for a
TO problem, i.e., some solutions break under their load cases. Therefore, we clean both datasets after
the dataset generation process by rejecting failing samples.

The individual samples are discretized on a nx×ny×nz voxel grid, where the choice of nx, ny, nz ∈ N
varies depending on the dataset. Both datasets have fixed Dirichlet boundary conditions but variable
force positions and magnitudes. For individual specifications of both datasets, see Table 1.

dataset # samples shape subsets # loads
# training
samples

# validation
samples

disc
(combined)

9246
39× 39× 4

voxels
simple 1 1509 200
complex 2 7337 200

sphere
(combined)

602
39× 39× 21

voxels
simple 1 150 36
complex 2 380 36

Table 1: Overview of the two SELTO datasets disc and sphere.

1https://www.ariane.group
2https://www.synera.io
3https://altair.com/optistruct

1



Each TO problem is based on the following information [2]:

1. The number of voxels (nx, ny, nz) and the voxel size in millimeters in each direction.

2. Material properties, given by Young’s modulus E, Poisson’s ratio ν and a yield stress criterion
σys. We choose E = 70 GPa, ν = 0.3 and σys = 450 MPa for both datasets.

3. A binary (3× nx × ny × nz)-tensor ΩDirichlet to encode the presence of directional homogeneous
Dirichlet boundary conditions for every voxel. 1s indicate the presence, and 0s the absence of
homogeneous Dirichlet boundary conditions.

4. A real-valued (3× nx × ny × nz)-tensor F to encode external forces, given in N/m3. The three
channels correspond to the force magnitudes in each spatial dimension.

5. A (1× nx × ny × nz)-tensor Ωdesign containing values ∈ {−1, 0, 1} to encode design space infor-
mation. We use 0s and 1s to constrain voxel densities to be 0 or 1, respectively. Entries of −1s
indicate a lack of density constraints, which signifies that the density in that voxel can be freely
optimized. For voxels that have Dirichlet boundary conditions or loads assigned to them, we
enforce the density value to be 1 by setting Ωdesign = 1.

All tensors are defined voxel-wise, including ΩDirichlet and F . This makes our datasets easy to use in
DL applications as it allows for a shape-consistent tensor representation. The SELTO datasets can be
accessed via Zenodo4 [1] and the Python library DL4TO5 [3] can be used to download and access all
individual SELTO dataset subsets.
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DL4TO: A Deep Learning Library for
Sample-Efficient Topology Optimization
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Abstract. We present and publish the DL4TO software library – a Python
library for three-dimensional topology optimization. The framework is
based on PyTorch and allows easy integration with neural networks. The
library fills a critical void in the current research toolkit on the intersec-
tion of deep learning and topology optimization. We present the structure
of the library’s main components and how it enabled the incorporation
of physics concepts into deep learning models.

Keywords: Topology optimization · Deep learning · Software library.

1 Introduction

We begin by briefly introducing the problem of Topology Optimization (TO)
and the recent development of applying deep learning to it.

1.1 Classical Topology Optimization

The computational discipline of topology optimization (TO) aims to optimize
mechanical structures. Since its development in 1988 [4], TO is a powerful tool
widely adopted by engineers in a variety of fields, e.g., fluid [6] and solid me-
chanics [15], acoustics [14,29], and heat transfer [10].

The Solid Isotropic Material with Penalization (SIMP) method [5] is widely
regarded as the most significant classical approach used in TO. SIMP involves a
density-based setup where the density takes values between 0 and 1 over a given
design domain. The density represents to which degree material is present in
different places. SIMP first voxelizes the domain and density and then employs
an iterative optimization scheme to improve structural performance by adjust-
ing voxel densities. In the case of linear elasticity, one evaluates the integrity of
the resulting structure via von Mises stresses, whose computation involves the
corresponding partial differential equation (PDE). The specified objective func-
tion and constraints may vary depending on the user’s needs. The most common
setup for mechanical problems is compliance minimization [7], where we mini-
mize a compliance objective subject to volume and possibly stress constraints.
See Algorithm 1 for a pseudo-code representation of our SIMP implementation.
For more details on SIMP see [5].
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Algorithm 1 Our implementation of the Solid Isotropic Material with Penal-
ization (SIMP) algorithm for compliance minimization with volume and stress
constraints. We typically initialize θ0 to be 0.5 everywhere, where it is not
enforced otherwise. For the filtering we apply a smoothed Heaviside function
Hβ(θ) := 1− exp(−βθ) + θ exp(−β) with a smoothing factor β > 0 which we
gradually steepen over the iterations. The SIMP exponent p is commonly chosen
as p = 3 to further discourage non-binary solutions.

Require: F , σys, N , λ, µ ▷ Forces, yield stress, #iterations and loss weights
Initialize: θ0 ▷ Start with an initial density
Set: p = 3 ▷ Set the SIMP exponent to its typical value
for i = 0, . . . , N − 1 do

θi ← project(θi) ▷ Project density values into the unit interval
θi ← smooth(θi) ▷ Avoid checkerboard patterns via smoothing
θi ← filter(θi) ▷ Encourage binary densities via filtering
u, σvM = pde solver(F, θi

p) ▷ Solve PDE for current density and exponent p
loss compl = FTu ▷ Compliance with forces F and displacements u
loss vol = ∥θi∥1 ▷ Compute volume loss term
loss stress = softplus(σvM − σys) ▷ Compute stress constraint loss term
loss = loss compl + λ · loss vol + µ · loss stress ▷ Sum up and weight losses
θi+1 ← gradient step(θi, loss) ▷ Update density via gradient descent

end for

return θN ▷ Return final density distribution

1.2 Neural Networks for Topology Optimization

The iterative nature of density-based methods like SIMP requires repeated solv-
ing of the governing PDE. This becomes computationally prohibitive for high
voxel mesh resolutions, leading to practical limitations [1]. Recent Deep Learning
(DL) research has explored overcoming this challenge. One can broadly classify
the advances into four categories [33]:

1. Reduce SIMP iterations: Neural networks map from intermediate SIMP iter-
ations to the final structure, technically performing a deblurring task [2,3,26,28].

2. Eliminate SIMP iterations: Neural networks directly predict the final density
distribution without performing any SIMP iterations [21,30,32].

3. Substitute for PDE solver: One replaces classical PDE solvers with neural
networks, removing the primary bottleneck [8,20,24].

4. Neural reparameterization: One uses neural networks to reparameterize the
density function [11,17,31,33]. However, one usually still requires computa-
tionally demanding PDE evaluations for the training.

As advances in computational power and DL have only recently brought the
application of DL to TO in the realm of the possible, the literature on it is
still in its infancy. As a result, the authors are not aware of any public software
framework for TO using DL, requiring every researcher to write their code from
scratch.
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We want to address this issue by presenting DL4TO, a flexible and easy-to-use
python library for three-dimensional TO. The library is open source and based
on PyTorch [22], allowing for easy integration of DL and TO methods.

2 The DL4TO Framework

2.1 Motivation

In this section, we give a basic overview of the DL4TO3 library. The primary mo-
tivation for developing DL4TO is the need for a flexible and easy-to-use basis to
conduct DL experiments for TO in Python. The library focuses on linear elastic-
ity on structured three-dimensional grids. DL4TO comes with its own PDE solver,
a SIMP implementation, and various objective functions for classical and learned
TO. The PyTorch [22]-based implementation smoothly connects the world of TO
with the world of DL. To our knowledge, only two Python libraries for TO [16,18]
exist, and neither allows for easy integration with neural networks.

2.2 Core Classes

In the following we give an overview of how our framework works. Below, we
introduce the three main classes that form the core of our library.

– Problem: An important novelty of our framework is how TO problems are
defined and processed. This is done via the Problem class, which contains
all information of the underlying TO problem one intends to solve. Since
we perform optimization on structured grids, all information is either in
scalar or in tensor form. This makes data compatible with DL applications
since it allows for a shape-consistent tensor representation. Let (nx, ny, nz)
be the number of voxels in each spacial direction. We can create a uniquely
characterized problem object via

problem = Problem(E, ν, σ_ys, h, F, Ω_dirichlet, Ω_design).

Here,
• E, ν and σ_ys denote scalar material properties, namely Young’s modu-

lus, Poisson’s ratio and yield stress.
• h is a three-dimensional vector that defines the voxel sizes in meters in

each direction.
• F is a (3 × nx × ny × nz)-tensor which encodes external forces given in

N/m3. The three channels correspond to the force magnitudes in each
spacial dimension.

• Ω_dirichlet is a binary (3×nx×ny×nz)-tensor which we use to encode
the presence of directional homogeneous Dirichlet boundary conditions
for every voxel. 1s indicate the presence, and 0s the absence of homo-
geneous Dirichlet boundary conditions. Currently, we do not support
non-homogeneous Dirichlet boundary conditions since we believe that
they are not required for most TO tasks.

3 The DL4TO library is publicly available at https://github.com/dl4to/dl4to.
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• Ω_design is a (1×nx×ny×nz)-tensor containing values ∈ {0, 1,−1} that
we use to encode design space information. We use 0s and 1s to constrain
voxel densities to be 0 or 1, respectively. Entries of −1 indicate a lack
of density constraints, which signifies that the density in that voxel can
be freely optimized. For voxels that have loads assigned to them we
automatically enforce the corresponding density value to be 1.

– TopoSolver: This parent class provides different methods for solving TO
problems. SIMP, as well as learned methods, are child classes. The initializa-
tion arguments slightly differ, depending on the method used. For instance,
a SIMP solver for compliance minimization with a volume constraint can be
initialized via

criterion = Compliance() + λ * VolumeConstraint(vol_fract)

topo_solver = SIMP(criterion, p, n_iters, lr)

with some arbitrary scalar choice of volume fraction vol_fract and opti-
mization weight λ. The other arguments of SIMP denote the SIMP exponent
choice p (by default, p= 3), the number of iterations n_iters and the learn-
ing rate lr.
Alternatively, for volume minimization with a stress constraint we could set
the optimization criterion as follows:

criterion = VolumeFraction() + λ * StressConstraint().

By default, our framework uses a built-in finite differences method (FDM)
solver whenever the PDE for linear elasticity is solved. This is attributed to
the regular grid structure, which makes the FDM a suitable and intuitive
approach. It is however also possible to include custom PDE solvers, e.g.,
learned PDE solvers.
In order to apply a topo_solver to a predefined problem object, we can
simply call it via

solution = topo_solver(problem),

which returns a solution object. Note that this also works with a list of
problems, in which case topo_solver likewise returns a list of solutions.
For learned solvers the procedure is similar, with the exception that the ini-
tialization of the topo_solver object additionally requires a preprocessing
as input. This determines how a problem object should be converted to neu-
ral network compatible input tensors when calling the solver (see Section 4).
The topo_solver is trained via the built-in train function:

topo_solver.train(dataloader_train, dataloader_val, epochs),

where dataloader_train and optionally dataloader_val are dataloaders
for the training and validation dataset.

– Solution: Objects of this class define solutions to TO problems. They usu-
ally result from calling a topo_solver with a problem object, but can also
be instantiated manually by passing a problem and a density distribution:
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solution = Solution(problem, θ).

Here, θ is a (1×nx×ny×nz)-tensor that defines a three-dimensional density
distribution that solves problem. The Solution class provides several useful
functionalities like logging and plotting.

3 Datasets

DL4TO is compatible with the SELTO datasets [13] introduced in [12] and publicly
available at https://doi.org/10.5281/zenodo.7034898. We want to give a short
overview of the two SELTO datasets containing samples of mechanical mounting
brackets. Each dataset consists of tuples (problem, solution), where solution
is a ground truth density distribution for problem. The two datasets are called
disc and sphere, referring to the shape of the corresponding design spaces; see
Table 1 for an overview of both datasets and Figure 1 for example samples.

dataset shape # samples

disc
39× 39× 4

voxels
9246

(8846 train, 400 val)

sphere
39× 39× 21

voxels
602

(530 train, 72 val)

Table 1: Overview of our datasets, called disc and sphere, with the names refer-
ring to the shape of their design spaces. Both datasets are split into a training
and a validation subset.

(a) Disc dataset (b) Sphere dataset

Fig. 1: Ground truth examples from the disc and sphere dataset [13]. The den-
sities are defined on a voxel grid and smoothed for visualization using Taubin
smoothing [27].

4 Model Pipeline

We now present how DL4TO enables efficient setup of data pipelines. DL4TO pro-
vides different models and loss functions, e.g., UNets [25] and the weighted binary
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cross-entropy. Due to the integration with PyTorch, optimizers like Adam [19]
can be used plug-and-play.

We begin with two critical components of DL4TO’s model pipeline: physics-
based preprocessing and equivariant architectures, see [12].

– Preprocessing: A suitable input preprocessing strategy is crucial for DL. Fol-
lowing [12], the library provides two preprocessing strategies, easily combined
via channel-wise concatenation.

1. Trivial preprocessing: For each problem object, the input of the neu-
ral network is a 7-channel tensor which results from the channel-wise
concatenation of Ω_dirichlet, Ω_design, and normalized loads F.

2. PDE preprocessing [12] [32]: We set up a density distribution that is 1
wherever allowed by problem. We compute normalized von Mises stresses
for that density by solving the PDE for linear elasticity. We use the von
Mieses stresses as a 1-channel input to the neural network.

– Equivariance: Equivariance is the property of a function to commute with
the actions of a symmetry group. For a given transformation group G, a
function f : X → Y is (G-)equivariant if

f(TX
g (x)) = TY

g (f(x)) ∀g ∈ G, x ∈ X,

where TX
g and TY

g denote linear group actions in the corresponding spaces X
and Y [9]. As shown by [12], mirror and rotation equivariance can drastically
improve model performance on TO tasks. We implement equivariance via
group averaging [23] by defining an equivariance wrapper F f

G via

F f
G(x) :=

1

|G|
∑
g∈G

TY
g−1

[
f(TX

g (x))
]
.

The plug-and-play nature of F f
G allows effortless applicability to any finite

transformation group G and any model f .

5 Experiments

Generating large datasets is costly; therefore, reducing the required training
samples, e.g., by modifying the DL model design, is highly beneficial. Using the
DL4TO library, [12] investigates the sample efficiency of models, i.e., the model’s
performance when trained on a few training samples. They visualize the sample
efficiency of a model via so-called sample efficiency curves (SE curves). Each
SE curve uses separate instances of a given model setup trained on subsets of
the original training dataset of increasing size. One then determines the perfor-
mance of these models on a fixed validation dataset, e.g., via Intersection over
Union (IoU) and fail% (the percentage of failing model predictions). Figure 2
shows [12]’s results and presents dramatic boosts in the UNet’s performance
when incorporating physics via equivariance and trivial+PDE preprocessing.
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(a) Disc dataset (b) Sphere dataset

Fig. 2: Sample efficiency curves from [12], trained and evaluated via DL4TO on
the SELTO datasets disc (left) and sphere (right). The horizontal-axis shows
the size of the training dataset for the different models on a logarithmic scale.
The vertical-axis shows the performance of the criteria IoU and fail%. Each
of the plots shows four different models based on trivial preprocessing (red),
trivial+PDE preprocessing (blue), equivariance (solid line), and no equivariance
(dashed line).

These improvements are especially visible for low numbers of training samples.
For a more in-depth analysis and comparison of the proposed modeling ap-
proaches, we refer to [12].

6 Conclusion

We presented the DL4TO library. The Python library enables research in the in-
tersection of topology optimization and deep learning. Seamlessly integrating
with PyTorch, DL4TO enables a smooth interaction between deep learning mod-
els and established algorithms like SIMP. Further, DL4TO provides concepts like
UNets, SIMP, equivariance, differentiable physics via finite difference analysis,
integration with the SELTO datasets [13], as well as three-dimensional interac-
tive visualization. Our library is especially useful for data scientists who want
to apply deep learning to topology optimization, as it provides a flexible yet
easy-to-use framework. DL4TO will continue to be expanded, and the commu-
nity is welcome to contribute. Documentation and tutorials can be found at
https://dl4to.github.io/dl4to/, providing a guide on how to use the library and
its features.
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Abstract. Recent developments in Deep Learning (DL) suggest a vast potential for Topology
Optimization (TO). However, while there are some promising attempts, the subfield still lacks a firm
footing regarding basic methods and datasets. We aim to address both points. First, we explore
physics-based preprocessing and equivariant networks to create sample-efficient components for TO
DL pipelines. We evaluate them in a large-scale ablation study using end-to-end supervised training.
The results demonstrate a drastic improvement in sample efficiency and the predictions’ physical
correctness. Second, to improve comparability and future progress, we publish the two first TO
datasets containing problems and corresponding ground truth solutions.
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1. Introduction. The computational discipline of Topology Optimization (TO)
generates mechanical structures. Increased computational power made TO an integral
tool for engineers in fields ranging from heat transfer [14] and acoustics [17, 51] to
fluid [7] and solid mechanics [19]. Still, TO remains computationally costly and often
time-consuming [1, 25]. Recently, Deep Learning (DL) approaches tried to address
this. While the approaches are promising, the subfield lacks foundations. This paper
aims to establish these foundations, focusing on linear elasticity problems.

The lack of foundations shows most in two places. First, we see a need for more
involvement of physics priors in the DL pipeline and the evaluation of their efficacy.
Second, to the authors’ knowledge, no publicly available TO datasets exist. The
release of public datasets often proved to be the deciding spark for the flowering of
DL subfields. Here we aim to address both points.

We will now give a high-level overview of the classical SIMP [4] method to frame
the problem DL methods try to solve. Solid Isotropic Material with Penalization
(SIMP) [4], arguably the most important classical TO method, uses a density-based
setup. Here one discretizes a given design domain into voxels, each having a density
value between 0 and 1. These values represent the amount of material in the voxel,
thereby defining a mechanical structure. One employs the partial differential equation
(PDE) governing the physical phenomenon of interest to determine the performance
based on specified constraints and cost functions. One then adjusts the voxel densities
via iterative optimization methods to improve performance. From a mathematical
perspective, this constitutes a PDE parameter identification problem.

While much progress has been made, classical methods’ iterative nature and the in
resolution superlinear computational PDE-cost makes classical methods highly com-
putationally demanding – often to the point of practical impossibility [1]. Recent
research tries to overcome these challenges using deep learning (DL), i.e., neural net-
works [5], to speed up and improve the optimization process.
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While these DL methods can often solve TO problems in less than a second, they
still lack a solid foundation regarding architecture, data preprocessing, evaluation
criteria, benchmarks, and datasets. Overall, the subdiscipline of applying DL to TO
is in its infancy, with most papers focusing on two-dimensional settings [28, 32, 33,
37, 44, 47, 54, 55]. In particular, the lack of datasets drastically limits the evaluation
and comparability of new approaches.

This paper establishes and compares a set of tools for DL-based TO, including the
choice of network architecture, data preprocessing techniques, and the incorporation
of physical priors. The paper also publishes two three-dimensional datasets containing
almost 10 000 TO problems and corresponding solutions.

As in DL, not only the amount but also the similarity of the training data to
one’s problem plays a crucial role; we also study the so-called generalization [26] of
our tools. Generalization is critical for TO, as large-scale training data generation
costs can be prohibitive.

Our main contributions are:
• We develop and evaluate physical priors in the DL pipeline, e.g., PDE-based

preprocessing and equivariant models.
• We provide a large-scale ablation study to assess the sample-efficiency of

different architectures and preprocessings, i.e., we study the efficacy in the
small data setting.

• We provide the first publicly available TO datasets containing problems and
corresponding ground truth solutions.

We believe the publication of datasets will improve the field’s comparability and
incorporating physical laws into the data pipeline marks a significant step toward
real-world applicability.

2. Preliminaries and related work. We now briefly introduce classical TO,
followed by a review of the current literature on DL for TO.

2.1. Density-based topology optimization. We start by discussing density-
based TO, arguably the most common classical TO approach – also used to generate
our datasets (see Section 3).

Density-based TO [4] aims to minimize a cost or objective function by adjusting
the material’s density distribution ρ : Ω → {ρmin, 1} over a fixed domain Ω ⊂ Rd,
typically d ∈ {2, 3}. Here, 0 < ρmin ≪ 1 defines a minimal density value. While
the final objective is to obtain binary densities ρ(·) ∈ {0, 1}, setting ρmin > 0 is a
numerical necessity for solving the governing PDE. Additionally, this optimization is
subject to physical constraints. The specified objective function and constraints may
vary depending on the user’s needs.

This paper focuses on compliance minimization, the most common setting for
mechanical problems. The corresponding optimization problem reads as follows:

min
ρ

FTu(ρ)(2.1a)

subject to K(ρ)u = F,(2.1b)

∥ρ∥1 ≤ Vmax,(2.1c)

σvM(u) ≤ σys.(2.1d)

Here (2.1a) is the compliance objective function, F represents the global load distri-
bution, u are the displacement and K is the symmetric positive operator of linear
elasticity. K includes the characteristic properties of the used material described by
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Young’s modulus and Poisson’s ratio, which we denote by E ∈ R and ν ∈ [0, 0.5],
respectively. One constrains the amount of allowed material by Vmax (2.1c), and
one may include a stress constraint (2.1d). This is done to ensure that the maximal
von Mises stress σvM is below the yield stress σys of the material. The von Mises
stresses are used to predict mechanical yielding and are derived non-linearly from the
displacements u.

In practice, the SIMP [4] method relaxes the problem. Instead of strictly binary
density values, one allows ρ : Ω → [ρmin, 1] and encourages near-binary densities
by extending Young’s modulus over ρ’s interval via E(ρ) = E0ρ

p, where E0 is the
original (isotropic) material’s modulus. The exponent p controls the penalization of
non-binary densities, usually p = 3. For implementation purposes, one discretizes the
design space Ω into a regular voxel grid and iteratively updates ρ until a user-specified
convergence criterion is met.

As discussed in the introduction, despite several advancements in structural TO,
one of the main challenges is the high computational cost. The main bottleneck in
classical iterative approaches is that each iteration uses the displacements and stresses
for the current density and therefore has to solve the PDE for linear elasticity in (2.1b).
Due to this computational challenge, TO at high resolutions, i.e., over many voxels,
can take hours, even days [1]. This inspired researchers to develop DL-based TO
methods to reduce or eliminate the need to solve PDEs.

2.2. Neural networks for topology optimization. One can broadly classify
advances in TO using DL into three categories [55].

Reduce or eliminate SIMP iterations: The first serious attempts of TO via
DL aimed to reduce the number of SIMP iterations [3, 44, 50]. In 2017, Sosnovik
et al. [44] interpreted two-dimensional TO problems as image-to-image regression
problems and were the first to apply convolutional neural networks (CNNs) to TO.
Following well-known image processing approaches, they trained a UNet model [41]
to map from intermediate SIMP iterations to the final structure. In 2018, Banga et
al. [3] transferred these ideas to the three-dimensional case. Xue et al. [50] made
each SIMP iteration cheaper by running it on a coarse resolution. They then applied
a DL-based super-resolution method to increase the structure’s final granularity. In
2020, Abueidda et al. [2] were the first to use residual neural networks (ResNets) [56]
and to consider two-dimensional nonlinear elasticity.

In 2019, Yu et al. [52] developed the first end-to-end learning routine that directly
predicts the final density without performing any SIMP iterations. They also created
a generative framework to increase the resolution of their predicted designs. This
formed the basis for a series of publications [32, 33, 40, 43] on generative adversarial
network (GAN)-based TO algorithms [21].

Compared to previous research, Nie et al. [32] and Zhang et al. [54] achieved a
better generalization by not directly giving the network the boundary conditions as
input. Instead, they passed displacements and von Mises stresses into the network.
They argue that neural networks have difficulties extending to previously unseen
boundary conditions if the input data is very sparse since the high sparsity of the
input matrices leads to high variance of the mapping function.

Substitute SIMP’s PDE solver: These methods aim to remove classical PDE
solvers from the SIMP algorithm, removing its primary bottleneck. Senhora et al. [42]
solved the PDE on a coarse grid and learned an upscaling to higher resolutions. Qian
et al. [37] proposed a dual-model neural network using a forward model to compute
the compliance of the structure and an adjoint model to determine the derivatives
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with respect to the density of each voxel. Similarly, Chi et al. [11] and Lee et al. [28]
used neural networks to replace the gradient and objective function computation.

Neural reparameterization: Using implicit neural representation for complex
signals is an ongoing research topic in computer vision [10] and engineering [30]. Sev-
eral TO publications [15, 23, 53, 55] feature neural networks to reparameterize the
TO’s density field. While Hoyer et al. [23] mapped latent vectors to discrete grid
densities, Chandrasekhar & Suresh [9] used multilayer perceptrons to learn a con-
tinuous mapping from spatial locations to density values. Since these models are
mesh-independent, they can represent the density function at arbitrary resolutions.
However, one usually still requires PDE evaluations for training, which is computa-
tionally demanding.

While most DL approaches to TO are entirely oblivious to the underlying physics,
there is a small number of approaches that have started to include physics-inspired
properties into the training process: Banga et al. [3] and Rade et al. [38] augmented
the dataset by including rotations and mirrors of given loads and boundary conditions
to encourage equivariance. Nie et al. [32] and Zhang et al. [56] involved physics by
feeding the network strain and stress information as inputs. Cang et al. [8] and Zhang
et al. [55] introduced physics via the loss function design, comparable to physics-
informed neural networks (PINNs) [39].

To our knowledge, no literature incorporated the problem’s underlying physics
by modifying the architecture of the DL model itself. We demonstrate that we can
dramatically improve sample efficiency, i.e., the model’s performance when trained on
a few training samples, and facilitate geometric reasoning by restricting the hypothesis
space to group equivariant models. Cohen & Welling [13] introduced the first group
equivariant CNNs in 2016. Nowadays, their application ranges from chemistry [48]
and physics [6] to a wide range of tasks in geometric DL [46, 20]. For image processing
tasks, Dumont et al. [18] showed that enforcing relevant equivariances can improve
generalization performance and

3. Datasets. We find a substantial lack in the availability of public three-
dimensional TO datasets, i.e., to the best of our knowledge there is none. This
is problematic for several reasons. First, it is hard to reproduce other published
results. Second, it requires each researcher to generate their own datasets, which
is time-consuming and computationally demanding. Lastly, the lack of established
TO datasets impedes the comparability of results throughout the community. To
alleviate this issue, we publish two three-dimensional TO datasets containing sam-
ples of mounting brackets, which we call disc dataset and sphere dataset, refering to
the shape of their respective design spaces. Both datasets are publicly available at
https://doi.org/10.5281/zenodo.7034898 [16].

Each dataset consists of TO problems and associated ground truth density distri-
butions. We generated the samples in cooperation with the ArianeGroup and Synera
using the Altair OptiStruct implementation of SIMP within the Synera software. The
ArianeGroup designed the mounting brackets in the datasets to be of practical use,
though real-world aerospace applications would require more complex load cases. The
samples are discretized on a nx×ny×nz voxel grid, where the choice of nx, ny, nz ∈ N
varies depending on the dataset. Both datasets have fixed Dirichlet boundary condi-
tions but variable force positions and magnitudes.
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dataset # samples shape subsets # loads
# training
samples

# validation
samples

disc
(combined)

9246
39× 39× 4

voxels
simple 1 1509 200
complex 2 7337 200

sphere
(combined)

602
39× 39× 21

voxels
simple 1 150 36
complex 2 380 36

Table 1: Overview of our datasets, called disc and sphere, with the names referring
to the shape of their design spaces. Both datasets can be split into subsets with
load cases of one or two points of attack. We call these subsets simple and complex,
respectively. When we refer to the mixed datasets, i.e., the combination of simple and
complex, we sometimes call these disc combined and sphere combined.

One can uniquely characterize each TO problem via the following properties:

1. The number of voxels (nx, ny, nz) and the voxel size in millimeters in each
direction.

2. Material properties, given by Young’s modulus E, Poisson’s ratio ν and a
yield stress criterion σys. We choose E = 70 GPa, ν = 0.3 and σys = 450
MPa for both datasets.

3. A binary (3× nx × ny × nz)-tensor ωDirichlet to encode the presence of direc-
tional homogeneous Dirichlet boundary conditions for every voxel. 1s indicate
the presence, and 0s the absence of homogeneous Dirichlet boundary condi-
tions.

4. A real-valued (3× nx × ny × nz)-tensor F to encode external forces, given in
N/m3. The three channels correspond to the force magnitudes in each spacial
dimension.

5. A (1× nx × ny × nz)-tensor ωdesign containing values ∈ {−1, 0, 1} to encode
design space information. We use 0s and 1s to constrain voxel densities to
be 0 or 1, respectively. Entries of −1s indicate a lack of density constraints,
which signifies that the density in that voxel can be freely optimized. This
naturally defines the voxel sets Ω−1,Ω0, and Ω1. For voxels that have Dirich-
let boundary conditions or loads assigned to them we enforce the density
value to be 1 by setting ωdesign = 1.

All tensors are defined voxel-wise, including ωDirichlet and F . This makes our datasets
easy to use in DL applications as it allows for a shape-consistent tensor representation.

The SIMP method does not always provide a physically plausible solution for a
TO problem, i.e., some solutions break under their load cases. Therefore, we clean
both datasets after the dataset generation process by rejecting failing samples. This
leaves a total count of almost 10 000 problem-ground truth pairs. Both datasets can
be split into subsets with load cases of one or two points of attack. We call these
subsets simple and complex, respectively. We refer to the combination of the simple
and complex dataset as the disc combined and sphere combined dataset.

See Table 1 for an overview of both datasets and Figure 1 for ground truth
examples. More samples can be found in the ground truth-columns of Appendix C,
where we present a total of 40 randomly chosen samples.
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(a) disc simple (b) disc complex (c) sphere simple (d) sphere complex

Fig. 1: Ground truth examples from the disc and sphere dataset [16]. The densities
are defined on a voxel grid and are smoothed for visualization purposes using Taubin
smoothing [45].

4. Methods. This section introduces the DL pipelines we evaluate and analyze
in Section 5. We examine different input preprocessing strategies and the effects of
physically motivated group averaging [35]. We use an end-to-end learning approach,
i.e., train a neural network f to map preprocessed TO problems to a optimized density
distributions provided by the datasets.

4.1. Preprocessings. Choosing a suitable input preprocessing strategy is cru-
cial for DL. We now present the two main preprocessings we use in this paper. It is
possible to combine these via simple channel-wise concatenation of their outputs.

1. Trivial preprocessing. The input of the neural network is a 7-channel ten-
sor which results from the channel-wise concatenation of Dirichlet boundary
conditions ωDirichlet, loads F , and design space information ωdesign. Addi-
tionally, we normalize each sample’s F via the mean ∥F∥∞ over all training
samples. This is arguably the most straightforward and intuitive type of
preprocessing for learned end-to-end TO.

2. PDE preprocessing. As proposed by Zhang et al. (2019) [54], we first de-
fine an initial density distribution ρinit that is 1 on Ω1 and Ω−1, and 0 on Ω0.
For ρinit, we then compute the initial von Mises stresses, which we obtain by
solving the PDE for linear elasticity. We normalize the resulting tensor anal-
ogously to the normalization of F above. These initial von Mises stresses are
then used as a 1-channel input to the neural network. Analogously, it would
also be possible to use the full initial stress tensor or the initial displacements
as network input.

We illustrate both preprocessing strategies and our model pipeline in Figure 2.

4.2. Architecture. We choose a UNet [41] as our neural network architecture,
which is a convolutional encoder-decoder network. The encoder consists of repeated
application of convolutions, each followed by a rectified linear unit (ReLU) activation
function and a max pooling operation. During the encoding, the encoder of the
UNet reduces the spatial information while it increases the feature information. The
decoder then extends the feature and spatial information through convolution and
upsampling steps and concatenations with high-resolution features from the encoder.
See Appendix A for more details on the UNet architecture.
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Fig. 2: Illustration of our model pipeline, using an end-to-end learning approach,
where the function f represents the neural network. Top: Trivial preprocessing.
We concatenate ωDirichlet, ωdesign, and forces F = F1 ∪ F2 into a 7-channel tensor,
which after normalization, we use as input for f . Bottom: PDE preprocessing. We
compute an initial density distribution ρinit and corresponding initial displacements
and stresses. The image displays the initial von Mises stress distribution, which is a
1-channel tensor.

4.3. Equivariance. Equivariance is the property of a function to commute with
the actions of a symmetry group acting on its domain and range. For a given trans-
formation group G, we say that a function f : X → Y is (G-)equivariant if

f(TX
g (x)) = TY

g (f(x)) ∀g ∈ G, x ∈ X,(4.1)

where TX
g and TY

g denote linear group actions in the corresponding spaces X and
Y [13]. That is, transforming an input x by a transformation g and then passing
it through f should give the same result as first mapping x through f and then
transforming the output f(x) (see left image of Figure 3). In many machine learning
tasks, we possess prior knowledge about equivariances our predictor should have.
Including such knowledge directly into the model can significantly facilitate learning
by freeing up model capacity for other factors of variation [49]. Since G is a group,
it also contains the identity transformation and a unique inverse transformation g−1

for each g ∈ G. Therefore, we can reformulate (4.1) as

f(x) = TY
g−1

[
f
(
TX
g (x)

)]
,

allowing the implementation of equivariance via group averaging [31, 35] by defining

an equivariance wrapper F f
G as

F f
G(x) :=

1

|G|
∑
g∈G

TY
g−1

[
f(TX

g (x))
]
.



8 SÖREN DITTMER, DAVID ERZMANN, HENRIK HARMS, PETER MAASS

Fig. 3: Left: If f : X → Y is G-equivariant, then for each g ∈ G applying f ◦ TX
g

is equivalent to TY
g ◦ f . Here, g is represented by a 90° clockwise rotation. Right:

Illustration of the equivariance wrapper F f
G. We transform the input x via group

actions TX
gi and feed the transformed data into the model f . We then reverse the

initial transformation on the outputs via TY
g−1
i

and aggregate the results. This process

is called group averaging. The choice of the (finite) transformation group G is entirely
free.

F f
G is equivariant with respect to G since for each h ∈ G it holds that

TY
h−1

[
F f
G

(
TX
h (x)

)]
=

1

|G|
∑
g∈G

TY
(gh)−1

[
f
(
TX
gh(x)

)]
=

1

|G|
∑
gh∈G

TY
g−1

[
f
(
TX
g (x)

)]
=

1

|G|
∑
g∈G

TY
g−1

[
f
(
TX
g (x)

)]
= F f

G(x).

For an illustration of F f
G see the right image of Figure 3.

The most popular approach to enforcing group equivariance in DL is enforcing
invariance of the network’s convolutional filters and activation functions [13]. How-
ever, performing group averaging has several advantages. First, it is straightforward
to implement. Second, its plug-and-play nature allows the trivial application to any
(finite) transformation group G and any model f . In particular, the applicability
to any f allows for direct comparisons between any non-equivariant model and its
equivariant counterpart.

Natural choices of transformation groups for our applications are the dihedral
symmetry group D4 and the octahedral symmetry group Oh, which describe all com-
binations of 90° rotations and reflections in R2 and R3, respectively. Thus the equi-
variance wrapper applies 8 transformations in the D4 and 48 in the Oh case. Note
that group actions on vector fields affect spacial locations and vector directions, un-
like on scalar fields. The necessity to account for vector directions makes equivariance
wrappers especially suited and flexible.



SELTO: SAMPLE-EFFICIENT LEARNED TOPOLOGY OPTIMIZATION 9

We want to clarify that the equivariance wrapper fundamentally differs from data
augmentation, i.e., augmenting the dataset with rotations and reflections. Augmenta-
tion averages over the objective, whereas the wrapper averages over the model. This
difference endows the wrapper with several significant advantages, most notably: The
model does not need to learn about equivariance as it is hard-coded. Consequently,
the wrapper is not only approximately equivariant but exactly – importantly, this
holds for any input, even for inputs drastically different from the training data.

5. Numerical experiments. In this section, we conduct several numerical ex-
periments to illustrate the effectiveness of adding physics-based information via PDE
preprocessing and equivariance to our DL models.

5.1. Training. We train and compare different combinations of preprocessings
described in Section 4, each with and without equivariance. Due to the reduced
number of voxels in the z-direction and for simplicity, we chose the dihedral symmetry
group, D4, as the transformation group for all our experiments. All models are
implemented in PyTorch [34]. We determine the batch sizes individually, depending
on the memory capacity and comparability (see Appendix A). We choose the weighted
binary cross-entropy (BCE) as our loss function, and calculate the weighting factor
based on the training dataset. We use the Adam optimizer [27] with a learning rate
of 10−3 in all our experiments.

We train all models until their improvement on the validation set stalled for
100 epochs and then pick the model corresponding to the best validation epoch; this
stopping criterion results in models trained for 100 to 1000 epochs.

We also experimented with different network architectures, transformation groups
and preprocessing strategies. However, they led to worse performances than the ones
presented here. Regardless, we think that these experiments can still be of interest
for the research community (see Appendix B).

5.2. Evaluation. We now discuss our evaluation methodology for the analysis of
our DL models. In particular, we want to compare the impact of different preprocess-
ing strategies and equivariances on our models. We begin by defining our evaluation
criteria.

5.2.1. Evaluation criteria. We now introduce the criteria we use to evaluate
our models over the validation datasets. Before we apply the criteria we first binarize
the densities produced by the DL models, such that they only contain 0s and 1s. We
make use of the following two criteria:

• IoU: In contrast to our loss, the BCE, which is distribution-based, the In-
tersection over Union (IoU) is region-based. It is defined as

IoU =
TP

TP + FN+ FP
,

where TP, FN and FP denote the number of true positive, false negative and
false positive voxel predictions. We limit the evaluation of the IoU to the
editable design space Ω−1. Following Goodhart’s law [22] and established
practices in the segmentation community, we use the IoU as our primary
evaluation metric [29, 41].

• Fail percentage: We consider a prediction failed if the von Mises stress in
any voxel exceeds the yield stress by more than 10% or if any voxel with a
load case does not connect to one containing Dirichlet conditions. The fail
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percentage is the fraction of failed parts. This criterion makes us the first in
the DL for TO community who verify their predictions’ mechanical integrity.

A typical evaluation criterion in the DL for TO literature is the (balanced) accuracy
metric. However, we found that in most cases, IoU yields comparable values but, in
general, reflects the quality of its input more appropriately when used across differ-
ent datasets. Given that we can interpret the binary densities of our structures as
segmentation masks, IoU’s applicability is not surprising as it is the most common
metric for semantic segmentation. Therefore we will use IoU as our main evaluation
criterion.

5.2.2. Sample efficiency. One of the main impediments to learned supervised
TO is the high cost associated with generating new datasets. The necessity to gen-
erate thousands of problems with corresponding ground truth solutions often hinders
practical applicability in real-world situations since the generation of large datasets
can take days, even weeks. Consequently, reducing the number of required training
samples is highly beneficial, e.g., by modifying the DL model design. Therefore, we
put a particular emphasis on the visualization and measurement of our models’ sample
efficiency, i.e., the model’s performance when trained on few training samples.

We visualize the sample efficiency of a model with what we call sample efficiency
curves (SE curves). For each SE curve, we train separate instances of a given model
setup on subsets of the original training dataset of varying sizes. We then evaluate
and compare the performance of these models on a fixed validation dataset, using IoU
and fail percentage as our evaluation criteria. For the disc dataset, we choose training
subsets of sizes 2, 4, 10, 50, 100, 150, 250, 500, 1000, and 1500. For the sphere dataset
we train on 2, 4, 10, 50, 100, and 150 samples. This way, we obtain an individual
SE curve for each evaluation criterion. In order to compare different SE curves of the
same criterion, we report two metrics:

1. The normalized area under the curve (AUC) of that criterion up to a training
sample size of 150, denoted by AUC150. We use this metric to quantify sample
efficiency.

2. The final score, which is the value of that criterion achieved by the model
trained on the largest training subset.

5.3. Results. This section gives an overview of our numerical results and com-
pares the performance of different models. We begin with our main results, followed
by an analysis of our models’ generalization capabilities. Finally, we discuss model
alterations that did not yield improvements but might still be helpful for further
understanding and research.

5.3.1. Main results. As expected, model performance tends to improve with
increased training data. We also observe dramatic boosts in the UNet’s performance
when incorporating physics via equivariance and trivial+PDE preprocessing. These
improvements are especially visible for low numbers of training samples; see the SE
curves in Figure 4 and AUC150 scores in Table 2. From Figure 4, we observe that using
trivial+PDE preprocessing and equivariance in combination leads to a reduction in
the required training samples by two orders of magnitude while maintaining equivalent
IoU scores. Additionally, we notice a reduction in the fail percentage to almost 0%.

The improvements are also evident when visually comparing ground truths with
predictions; see Tables 4 to 7. Further, we observe that adding PDE preprocessing and
equivariance leads to predictions closer to the ground truth densities, which is espe-
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(a) disc combined (b) sphere combined

Fig. 4: Sample efficiency curves, trained and evaluated on disc combined (left) and
sphere combined (right). The x-axis shows the size of the training dataset for the
different models on a logarithmic scale. On the y-axis we see performance of the
criteria IoU and fail percentage. For each criterion we evaluate models using trivial
preprocessing (red), trivial+PDE preprocessing (blue), equivariance (solid line) and
no equivariance (dashed line).

cially noticeable on small training sets. Moreover, applying our equivariance wrapper
reduces the necessary number of epochs but increases overall training duration, see
Table 8 in Appendix A.

For an unbiased impression of our model predictions and to avoid cherry-picking,
we display 20 random samples and predictions from both datasets in Tables 9 and 10 in
Appendix C. We show two predictions for each sample, one using trivial preprocessing
only and one using trival+PDE preprocessing and equivariance. We trained the UNets
on 1500 and 150 samples for disc and sphere, respectively.

5.3.2. Generalization. As in all machine learning, generalization is also a prob-
lem in its application to TO. The problem led to some publications addressing the
issue [32, 54]. We quantify our models’ generalizability by cross-evaluating them on
different data subsets not used during training, i.e., we evaluate all models trained on
either disc simple, disc complex, or disc combined on each of the others. We proceed
analogously for the sphere models and datasets.

We compare the AUC150 and final scores for each model based on the correspond-
ing SE curve. For both IoU and fail percentage, we present the results for the AUC150

score in Table 2 and the final score in Table 3. We observe that the addition of PDE
preprocessing and equivariance improves the generalization capabilities of our models
considerably for both IoU and fail percentage, especially on small training sets.

6. Conclusion. We aimed to provide a strong foundation for future research
in DL for TO. On the one hand, we proposed and analyzed basic components and
principles for designing DL pipelines for TO. On the other hand, we provide two TO
datasets enabling the training and comparability of DL methods.
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More specifically, method-wise, we focused on physical correctness and sample-
efficiency. In practice, the existence of appropriate large-scale training data is costly
or simply not realistic; hence it is our conviction that sample-efficiency is a crucial
component of any future DL approach to TO.

To achieve this, we developed a physics-inspired approach. We conducted a large-
scale ablation study to prove the effectiveness of the two critical components of our
approach – on the one hand, PDE-based preprocessing and, on the other, mirror
and rotation equivariant architectures. These two key elements drastically improve
the overall predictions’ physical correctness and the sample efficiency, i.e., the model
performance when trained on only a few samples.

On the data side, we publish two three-dimensional TO datasets with a total
count of almost 10 000 problem-ground truth pairs. To our knowledge, these are the
first publicly available datasets for TO.
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Table 2: Tables containing AUC150 scores for different combinations of preprocessings
and equivariances. We (cross-)evaluate performance of models trained on the disc and
sphere datasets and highlight the row-wise best scores in bold.

trivial prepr. trivial+PDE prepr.

eval on train on no equiv. equiv. no equiv. equiv.

simple 0.76 0.86 0.84 0.87
disc simple complex 0.35 0.59 0.57 0.63

combined 0.63 0.80 0.78 0.81

simple 0.35 0.40 0.43 0.44
disc complex complex 0.28 0.44 0.48 0.58

combined 0.33 0.45 0.48 0.56

simple 0.55 0.63 0.64 0.65
disc combined complex 0.31 0.52 0.52 0.61

combined 0.48 0.63 0.63 0.69

simple 0.28 0.41 0.50 0.61
sphere simple complex 0.28 0.32 0.39 0.44

combined 0.30 0.37 0.43 0.56

simple 0.20 0.27 0.29 0.38
sphere complex complex 0.45 0.47 0.56 0.59

combined 0.38 0.45 0.49 0.57

simple 0.24 0.34 0.40 0.49
sphere combined complex 0.36 0.39 0.48 0.52

combined 0.34 0.41 0.46 0.56

(a) AUC150 scores for the IoU criterion. Higher values indicate better results.

trivial prepr. trivial+PDE prepr.

eval on train on no equiv. equiv. no equiv. equiv.

simple 1.71 0.10 0.33 0.01
disc simple complex 27.21 1.35 1.11 1.10

combined 2.95 0.76 0.89 0.05

simple 39.11 10.21 22.30 14.50
disc complex complex 49.39 16.13 9.37 5.07

combined 37.58 17.07 14.95 8.47

simple 20.41 5.16 16.31 12.26
disc combined complex 38.30 8.74 5.24 2.69

combined 20.27 8.92 7.92 4.26

simple 48.03 12.16 9.55 4.11
sphere simple complex 59.52 36.84 8.41 6.06

combined 56.51 24.02 27.93 7.73

simple 94.37 68.17 72.60 34.95
sphere complex complex 63.53 37.44 14.62 3.55

combined 83.33 54.13 26.61 6.42

simple 71.20 40.17 41.08 19.53
sphere combined complex 61.52 37.14 11.51 4.80

combined 69.92 39.08 27.27 7.08

(b) AUC150 scores for the fail% criterion.
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Table 3: Tables containing the final scores for different combinations of preprocessings
and equivariances. We (cross-)evaluate performance of models trained on the disc and
sphere datasets and highlight the row-wise best scores in bold.

trivial prepr. trivial+PDE prepr.

eval on train on no equiv. equiv. no equiv. equiv.

simple 0.87 0.89 0.90 0.91
disc simple complex 0.52 0.61 0.61 0.62

combined 0.77 0.84 0.83 0.85

simple 0.37 0.40 0.44 0.45
disc complex complex 0.40 0.48 0.52 0.62

combined 0.40 0.48 0.52 0.59

simple 0.62 0.65 0.67 0.68
disc combined complex 0.46 0.55 0.57 0.62

combined 0.59 0.66 0.67 0.72

simple 0.26 0.46 0.58 0.67
sphere simple complex 0.29 0.35 0.39 0.48

combined 0.34 0.44 0.52 0.66

simple 0.18 0.23 0.35 0.40
sphere complex complex 0.46 0.55 0.64 0.67

combined 0.43 0.50 0.58 0.63

simple 0.22 0.34 0.46 0.53
sphere combined complex 0.37 0.45 0.51 0.57

combined 0.38 0.47 0.55 0.65

(a) Final scores of the IoU criterion. Higher values indicate better results.

trivial prepr. trivial+PDE prepr.

eval on train on no equiv. equiv. no equiv. equiv.

simple 0.00 0.00 0.00 0.00
disc simple complex 0.00 0.00 0.00 0.00

combined 0.00 0.00 0.00 0.00

simple 32.50 15.50 24.50 13.50
disc complex complex 12.50 11.00 5.00 3.50

combined 25.50 15.00 7.00 5.00

simple 16.25 7.75 12.25 6.75
disc combined complex 6.25 5.50 2.50 1.75

combined 12.75 7.50 3.50 2.50

simple 52.78 8.33 0.00 0.00
sphere simple complex 69.44 13.89 0.00 0.00

combined 33.33 8.33 8.33 0.00

simple 99.97 61.11 38.89 13.89
sphere complex complex 66.67 13.89 0.00 0.00

combined 69.44 38.89 8.33 0.00

simple 76.39 34.72 19.44 6.94
sphere combined complex 68.06 13.89 0.00 0.00

combined 51.39 23.61 8.33 0.00

(b) Final scores of the fail% criterion. Lower values indicate better results.
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Table 4: Model predictions of two different problems from the disc simple validation
dataset, using the UNet with different preprocessings and equivariances. We train the
models on subsets of the dataset and vary the training size along the columns of the
table. At the boxes below the tables we show the corresponding ground truth density
for each problem.
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Table 5: Model predictions of two different problems from the disc complex vali-
dation dataset, using the UNet with different preprocessings and equivariances. We
train the models on subsets of the dataset and vary the training size along the columns
of the table. At the boxes below the tables we show the corresponding ground truth
density for each problem.
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Table 6: Model predictions of two different problems from the sphere simple vali-
dation dataset, using the UNet with different preprocessings and equivariances. We
train the models on subsets of the dataset and vary the training size along the columns
of the table. At the boxes below the tables we show the corresponding ground truth
density for each problem.
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Table 7: Model predictions of two different problems from the sphere complex
validation dataset, using the UNet with different preprocessings and equivariances.
We train the models on subsets of the dataset and vary the training size along the
columns of the table. At the boxes below the tables we show the corresponding ground
truth density for each problem.
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Appendix A. Network architecture and training details.
Our UNet architecture is inspired by Çiçek et al.[12] and based on the imple-

mentation from Pérez-Garćıa[36]. Like in Çiçek et al.[12], each layer of our encoder
contains two 3× 3× 3 convolutions, each followed by batch normalization [24] and a
rectified linear unit (ReLU) activation function, and then a max pooling operation.
For the sphere dataset, we choose a pooling kernel size of 2×2×2; for the disc dataset,
we choose 2 × 2 × 1 to account for the lower number of voxels in the z-direction. In
the decoding path, each layer consists of a nearest neighbor upsampling step, followed
by two 3 × 3 × 3 convolutions with batch normalization and ReLU activation func-
tions. In the last layer, a 1 × 1 × 1 convolution with a sigmoid activation function
reduces the number of output channels to 1 and acts as a binary voxel-wise classifier.
We use skip connections to pass information from layers of equal resolution in the
encoding path to the decoder and apply a dropout rate of 0.3 to reduce overfitting.
We use five encoding and four decoding blocks. Each encoding block doubles the
number of channels, starting with 10 output channels for the first block. We choose
the padding, so the image resolution stays unaffected by the convolutions. Based on
memory availability, we set the batch size to 128 when training on the disc dataset
and 28 when training on the sphere dataset. All models have been implemented in
PyTorch [34] with a total parameter count of approximately 1.6M. For training we
used an Nvidia GeForce GTX 1080 Ti GPU with 11GB VRAM. For the number of
training epochs and the approximate training times for different models trained on
the largest training subset, see Table 8.

Table 8: The number of training epochs and the approximate training time for UNets
with different preprocessings and equivariances, trained on the largest training subsets
of the disc and sphere combined datasets.

preprocessing equivariance training epochs training time (in minutes)
trivial 210 12
trivial ✓ 120 34

trivial+PDE 230 14
trivial+PDE ✓ 110 32

(a) disc combined

preprocessing equivariance training epochs training time (in minutes)
trivial 100 5
trivial ✓ 80 17

trivial+PDE 170 9
trivial+PDE ✓ 140 31

(b) sphere combined

Appendix B. Ablations and negative results. This section discusses several
model alterations that did not lead to noticeable improvements in our numerical
experiments. We think these results are still valuable to the community.

Above, we exclusively used the dihedral symmetry group, D4, in the equivariance
wrapper. For the sphere dataset, we also examined the performance of the octahedral
symmetry group Oh. While still constituting a significant benefit over not utilizing
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equivariance, this method was inferior to the use of the D4 symmetry group. We
suspect this is due to the fixed location of the sphere dataset’s Dirichlet condition,
negating the benefit of generalizing to more diverse locations of boundary conditions.

In addition to the preprocessings we examined in Subsection 5.3.1, we experi-
mented with various other preprocessing combinations. For instance, for an alterna-
tive preprocessing strategy we construct a binary mask to extract all voxels with either
Dirichlet boundary or load cases. The convex hull of this mask is then given as the
set of voxels included in the smallest convex polygon that surrounds all these voxels.
In case of one load point and one Dirichlet voxel this results in the simplest possible
density distribution that leads to a connected mechanical structure. This convex hull
density distribution is then used as a 1-channel input to the neural network. We
found that convex hull preprocessing did not lead to any measurable improvements
on the validation dataset, neither on its own nor in combination with other prepro-
cessings. We speculate that this is due to the convex hull being invariant to the
direction of the applied forces. We also found that applying PDE preprocessing on
its own produced similar but somewhat inferior results compared to the trivial+PDE
preprocessing. Also, adding the full initial stress tensor and initial displacements to
the PDE preprocessing did not improve over the presented PDE preprocessing.

We also experimented with different network architectures. In addition to the
UNet, we considered a ResNet [56] of depth 10 with 5-layer CNN blocks. However,
despite the UNet requiring less VRAM and computation time, it reliably outperformed
the ResNet.



24 SÖREN DITTMER, DAVID ERZMANN, HENRIK HARMS, PETER MAASS

Appendix C. Examples of model predictions.

Table 9: Random samples from the disc dataset. The first columns displays predic-
tion from the UNet with trivial preprocessing and without equivariance. The second
columns shows predictions from the UNet with trivial+PDE preprocessing and equi-
variance, which is our best model pipeline. All models have been trained on 1500
samples. In the third columns we show the ground truths densities corresponding to
each sample.

UNet
UNet

+physics
ground
truth

(a) disc simple

UNet
UNet

+physics
ground
truth

(b) disc complex
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Table 10: Random samples from the sphere dataset. The first columns displays
prediction from the UNet with trivial preprocessing and without equivariance. The
second columns shows predictions from the UNet with trivial+PDE preprocessing and
equivariance, which is our best model pipeline. All models have been trained on 150
samples. In the third columns we show the ground truths densities corresponding to
each sample.

UNet
UNet

+physics
ground
truth

(a) sphere simple

UNet
UNet

+physics
ground
truth

(b) sphere complex
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Abstract 

Most traditional methods for solving partial differential equations (PDEs) r equir e the costly solving of large linear systems. Neural 
operators (NOs) offer r emarka b le speed-ups over classical numerical PDE solvers. Here , w e conduct the first exploration and compar- 
ison of NOs for three-dimensional topology optimization. Specifically, we propose replacing the PDE solver within the popular Solid 

Isotropic Material with Penalization (SIMP) algorithm, which is its main computational bottleneck. For this, the NO not only needs to 
solve the PDE with sufficient accuracy but also has the additional challenge of providing accur ate gr adients whic h ar e necessar y for 
SIMP’s density updates. To realize this, we do three things: (i) We introduce a novel loss term to promote gradient-consistency. (ii) We 
guarantee equi v ariance in our NOs to incr ease the physical corr ectness of pr edictions. (iii) We intr oduce a nov el NO ar c hitecture called 

U-Net Fourier neural operator (U-Net FNO), which combines the m ulti-r esolution pr operties of U-Nets with the Fourier neural oper- 
ator (FNO)’s focus on local features in frequency space. In our experiments we demonstrate that the inclusion of the novel gradient 
loss term is necessary to obtain good r esults. Furthermor e , enfor cing group equivariance greatly improves the quality of predictions, 
especially on small tr aining datasets. F inally, w e show that in our experiments the U-Net FNO outperforms both a standard U-Net, as 
well as other FNO methods. 

Ke yw ords: deep learning, topology optimization, neural operators, inverse design 

1. Introduction 

Topology optimization (TO) is a cornerstone of mechanical engi- 
neering, pr oviding rigor ous fr ame works for designing mec hani- 
cal structures that are both lightweight and robust, tailored to 
meet user-defined objectives and constraints. Recent methods 
aim to solve TO problems across a diverse spectrum of indus- 
tries, encompassing aerospace and naval engineering (Aage et al., 
2017 ; Hwang et al., 2023 ), heat transfer (Ha & Cho, 2005 ), and 

medicine (Park et al., 2021 ). The Solid Isotropic Material with Pe- 
nalization (SIMP) method (Bendsøe & Sigmund, 2003 ) is widely re- 
garded as the most significant TO a ppr oac h. SIMP is an iter ativ e 
gradient-based method that requires repeated solving of a partial 
differential equation (PDE). Most traditional methods for solving 
PDEs involve numerical schemes that can lead to challenges re- 
garding computational cost and handling of complex geometries. 
The r ecent adv ancements in Deep Learning (DL), coupled with 

the r a pid pr ogr ess in computational po w er and data stor a ge , ha ve 
sparked interest in utilizing DL methods to solve PDEs. Notably, 
the emergence of neural operators (NOs , K o vachki et al., 2021 ; Li, 
K o v ac hki, et al., 2020a , b ) pr omises initiating a par adigm shift in 

our a ppr oac h to solving PDEs. One of the compelling adv anta ges 
of employing such surrogate models to tackle PDE problems is the 
r educed infer ence time. Ne v ertheless, ther e ar e tr ade-offs asso- 
ciated with this acceleration, necessitating thoughtful delibera- 
tion as to whether these concessions align with the objectives of 
a given task. The most apparent drawbacks revolve around gener- 
alization and accuracy. 

Our primary objective is to de v elop an NO as a substitute 
mapping for the PDE solver used in the SIMP fr ame work. We at- 
tain strong generalization capabilities from our choice of network 
arc hitectur e, the inclusion of group equivariance, and gradient- 
consistent training. The paper is structured as follo ws: w e review 

the curr ent liter atur e in Section 2 and explor e NOs in Section 3 . 
Subsequently, in Section 4 , we pr esent a compr ehensiv e br eak- 
down of the SIMP method and propose the implementation of NOs 
for SIMP . Finally , in Section 5 , we present numerical experiments 
that we conducted, along with their results. 

In this paper, we address the following k e y objecti ves: 

(i) We are the first to use NOs in TO as surrogates for 
SIMP’s PDE solver. This requires gradient-consistency, 
which is not inherent to NOs, and motivates a novel loss 
function. 

(ii) We introduce a new NO called U-Net Fourier neural op- 
erator (U-Net FNO). It combines the U-Net’s ability to 
ca ptur e spatial featur es with the Fourier neur al oper a- 
tor (FNO) ability to model operators based on Fourier 
space r epr esentations. We show that the U-Net FNO 

outperforms a standard U-Net and state-of-the-art FNO 

arc hitectur es. 
(iii) We introduce group equivariance to NOs, demonstrating 

clear benefits to the model’s sample efficiency, i.e., in the 
small-data setting. 
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2. Related Work 

This section offers a concise r e vie w of the existing liter atur e r e- 
garding the utilization of DL techniques in tackling both PDEs and 

TO. 

2.1. DL for PDEs 

Curr ent a ppr oac hes for solving PDEs using neur al networks can 

be categorized into two distinct strategies. For a more comprehen- 
sive and in-depth analysis and comparison, we refer the reader to 
Huang et al. ( 2022 ) and Tanyu et al. ( 2023 ). 

In the first a ppr oac h, PDEs ar e dir ectl y integr ated into the tr ain- 
ing process as constraints (Lagaris et al., 1998 ; Raissi et al., 2019 ; T. 
Xue et al., 2020 ). These constraints often stem from prior knowl- 
edge and are typically incorporated into the loss function used 

during training. Notable methods following this paradigm include 
Physics-Informed Neural Networks (PINNs, Raissi et al., 2019 ), the 
Deep Ritz Method (Yu & E, 2018 ), and the Deep Galerkin Method 

(Sirignano & Spiliopoulos, 2018 ). Since PDE-based constraints are 
typicall y continuous, tr aining does not involv e discr etized grids, 
as traditional numerical methods do (Cuomo et al., 2022 ). How- 
e v er, an y alter ations to physical parameters , coefficients , or ini- 
tial/boundary conditions necessitate r e-tr aining, whic h is a no- 
table dr awbac k. 

The second a ppr oac h involv es using DL to learn NOs (Li, Ko- 
v ac hki, et al., 2020b ), whic h can serv e as a ppr oximators for infinite- 
dimensional parameter-to-state mappings. Chen and Chen ( 1995 ) 
pioneered the early versions of NO methods based on operator 
theory. Pr esentl y, two pr ominent instances of this a ppr oac h ar e 
the Deep Operator Network (DeepONet, Lu, Jin, et al., 2019 ) and 

the FNO (Li, K o v ac hki, et al., 2020a ), both of whic h hav e br ought 
about significant advancements in the field. DeepONet empha- 
sizes parallel network structures based on universal approxima- 
tion theorems, while FNO relies on the Fourier transformation for 
its design. The core idea behind the FNO architecture is learning 
a kernel parameterized in Fourier space, where each Fourier layer 
in the FNO performs a global convolution on its input. 

2.2. DL for TO 

Density-based methods like SIMP operate iteratively, demanding 
repeated solutions of the PDE for linear elasticity (see Section 4 ). 
This iter ativ e pr ocess pr esents computational c hallenges, particu- 
larly when dealing with high-resolution voxel meshes (Aage et al., 
2015 ). Recent advancements in DL research have been dedicated 

to addressing this inherent challenge (Shin et al., 2023 ). These 
advancements can be broadly categorized into three main ar- 
eas (Zhang et al., 2021 ). 

Firstl y, DL tec hniques can be emplo y ed to reduce or even 

entir el y r eplace the need for SIMP iter ations . For instance , re- 
searc hers hav e used DL to ma p intermediate SIMP iter ations 
to the final density, essentially performing a deblurring opera- 
tion (Abueidda et al., 2020 ; Banga et al., 2018 ; Sosnovik & Oseledets, 
2019 ; L. Xue et al., 2021 ). Alternativ el y, some hav e de v eloped meth- 
ods that dir ectl y pr edict the final density distribution without r e- 
lying on SIMP iterations at all (Dittmer et al., 2022 ; Nie et al., 2021 ; D. 
Wang et al., 2022 ; Yu et al., 2019 ). Although there exist publications 
addr essing thr ee-dimensional (3D) TO (Banga et al., 2018 ; Challis 
et al., 2014 ; Dittmer et al., 2022 ; Martínez-Frutos & Herr er o-Pér ez, 
2016 ; Xiang et al., 2022 ), a substantial portion of the liter atur e pr e- 
dominantly focuses on the 2D case. Handling 3D data poses signif- 
icantl y gr eater c hallenges, primaril y due to memory and runtime 
constraints, making the task considerably more intricate. 

Secondly, and our method falls into this category, an alternative 
a ppr oac h involv es r eplacing SIMP’s tr aditional PDE solv er with a 
neur al network, ther eby eliminating the primary computational 
bottleneck and contributing to faster optimization. For instance, 
Chi et al. ( 2021 ) and Lee et al. ( 2020 ) train a network on a low- 
resolution grid and then validate it on a finer resolution. Qian and 

Ye ( 2021 ) and Lunz et al. ( 2021 ) employ a dual-model a ppr oac h to 
predict the PDE solution and the adjoint using a secondary net- 
work. Recent efforts have been made to incorporate the PDE for 
linear elasticity as a constraint within the loss function, akin to 
the methodology used in PINNs (Bolandi et al. , 2023 ; F aroughi et al. , 
2022 ; Jeong et al., 2023 ; Joglekar et al., 2023 ; Lu, Pestourie, et al., 
2021 ). Furthermor e, ther e ar e some publications center ed ar ound 

the utilization of DeepONets (Augenstein et al., 2023 ; He et al., 2023 ; 
Lu, Pestourie, et al., 2022 ) and FNOs (Li, Huang, et al., 2022 ) for solv- 
ing the PDE. To our knowledge, there exists no publication that 
employs NOs as part of the SIMP algorithm. In He et al. ( 2023 ), the 
authors learn a PDE solution operator for linear elasticity using a 
DeepONet a ppr oac h without enforcing gr adient-consistency. We 
demonstrate that without the incorporation of a loss term that 
pr omotes gr adient-consistency, NOs will likel y encounter difficul- 
ties when integrated into an iter ativ e gr adient-based algorithm 

like SIMP. 
Lastly, DL can also be utilized to r epar ameterize the density 

field (Deng & To, 2020 ; Ho y er et al., 2019 ; Zehnder et al., 2021 ; Zhang 
et al., 2021 ). Since these models are mesh-inde pendent, the y can 

r epr esent the density function at arbitrary resolutions. Ho w ever, 
one usually still requires computationally demanding PDE evalu- 
ations for the training process. 

3. Neur al Oper a tors 

In this section, we will explor e se v er al differ ent NOs that will serv e 
as surrogates for SIMP’s PDE solver. We will start with a prelimi- 
nary ov ervie w, and then pr oceed to intr oduce both our U-Net FNO 

arc hitectur e and the concept of group equivariant NOs. 

3.1. Preliminaries 

NOs (K o v ac hki et al., 2021 ) aim to learn an infinite-dimensional 
ma pping fr om a finite dataset of input-output pairs. Let 
n D , n A , n U ∈ N and let D ⊂ R 

n D be bounded and closed. We for- 
mulate the learning problem on real-valued Banach spaces A := 

A ( D;R 

n A ) and U := U ( D;R 

n U ) , with an operator G † : A → U mapping 
betw een these tw o spaces. Given an i.i.d. sequence of data points 
{ a i , u i } N i =1 ∼ (A , U ) with u i = G † (a i ) , the objective is to approximate 
G † with a parameterized mapping G θ : A → U with parameters θ
from some parameter space �. 

The NO arc hitectur e, as pr oposed in Li, K o v ac hki, et al. ( 2020b ), 
employs an iter ativ e a ppr oac h using a sequence of non-linear op- 
erators G i . These operators consist of linear integral operators fol- 
lo w ed b y point-wise non-linearities. Specifically, for an input func- 
tion v i at the i th layer, the computation of G i : v i �→ v i +1 is defined 

by 

G i v i (x ) := σ ( K θ (v i )(x ) + Wv i (x ) ) , ∀ x ∈ D i , 

where K θ is a linear operator parameterized by θ , W represents a 
linear transformation, and σ is an element-wise non-linear ac- 
tivation function. We set D 0 = D and impose that D i ⊂ R 

n D is a 
bounded domain for all i . 

We choose K θ to be a kernel integral transformation: 

K θ ( v i )( x ) := 

∫ 
κθ ( x, y ) v i ( y ) d y, ∀ x ∈ D i , 
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Figure 1: Our U-Net FNO model arc hitectur e . T he arc hitectur e is the same as a regular U-Net with skip connections, but Fourier layers replace regular 
con volutions . Inside the Fourier la yers , F denotes the Fourier transform, W is a linear bias term, and σ is an element-wise activation function. 

with κθ being a neural network parameterized by θ . Here, κθ serves 
as a learnable kernel function. We assume translation equivari- 
ance and choose κθ ( x , y ) = κθ ( x − y ). We then obtain 

K θ ( v i )( x ) = ( κθ ∗ v i )( x ) , ∀ x ∈ D i , (1) 

which in many PDE-related applications is a natural choice from 

the perspective of fundamental solutions (Renardy & Rogers, 
2006 ). 

Typically, NOs include a shallow fully connected neural net- 
work P at the start, acting as a local lifting operator to convert 
the input into a higher dimensional r epr esentation, i.e., v 0 ( x ) = 

P ( a ( x )) for a ∈ A . Similarl y, a local tr ansformation Q is a pplied to 
the output of the last layer, acting as a pr ojection oper ator onto 
the desired output function space (K o vachki et al., 2021 ). 

FNOs (Li, K o v ac hki, et al., 2020a ) efficientl y par ameterize the 
kernel function κθ by exploiting the Fourier space r epr esentation 

of v i . From equation ( 1 ) and the convolution theorem we derive 

K θ ( v i )( x ) = F 

−1 ( F (κθ ) · F (v i ) ) (x ) , ∀ x ∈ D i , 

where F denotes the Fourier tr ansformation, efficientl y calcu- 
lated using the Fast Fourier Transform (FFT). Assuming periodic- 
ity of κθ , a Fourier series expansion yields discrete Fourier modes. 
By truncating the series at a maximum of k max modes, F (κθ ) is di- 
r ectl y par ameterized as a learnable weight tensor with k max chan- 
nels . T his truncation acts as a low-pass filter, leading to r elativ el y 
smooth outputs (Augenstein et al., 2023 ). 

If the input domain is uniforml y discr etized with m sensor 
points, the vector F (κθ ) contains a maximum of k max 	 m modes. 
T he con volution can then be performed with quasi-linear com- 
plexity, requiring O(m log m ) operations using the FFT. This marks 
a substantial impr ov ement compar ed with the O(m 

2 ) operations 

needed to compute the integral in equation ( 1 ) using a quadra- 
ture rule (Boullé & Townsend, 2023 ). In practice, one can observe 
that by limiting the number of Fourier modes to k max 	 m , the 
accuracy of the approximation is not significantly compromised, 
especially when the input and output functions exhibit smooth- 
ness, r esulting in r a pid decay of the coefficients in their Fourier 
basis r epr esentation. This r eduction in Fourier modes contributes 
to lo w ering both the computational and training complexity of 
NOs. 

3.2. U-Net Fourier Neural Operators 

Since their introduction in 2015 (Ronneberger et al., 2015 ), U- 
Nets hav e consistentl y set the standard in numerous fields of 
DL. Over the years, the U-Net arc hitectur e has seen significant 
refinements and adaptations (Siddique et al., 2021 ), marked by 
notable adv ancements suc h as the integr ation of attention mech- 
anisms (Oktay et al., 2018 ; Vaswani et al., 2017 ) and the incor por a- 
tion of residual connections (Gu et al., 2019 ; Tong et al., 2018 ). We 
introduce the U-Net FNO as a neural network arc hitectur e that 
combines the U-Net’s ability to ca ptur e spatial features with the 
FNO’s proficiency in modeling operators based on Fourier space 
r epr esentations. 

A U-Net is a deep neural network arc hitectur e commonl y used 

for image segmentation and related tasks. It consists of an en- 
coding path that gr aduall y r educes spatial dimensions while in- 
creasing the number of feature channels. It is follo w ed b y a de- 
coding path that upsamples the features back to the original spa- 
tial dimensions. Skip connections are emplo y ed betw een the en- 
coding and decoding paths to help retain crucial spatial infor- 
mation. Instead of dir ectl y a ppl ying convolutional operations, the 
U-Net FNO utilizes convolutions in Fourier space . T his in volves 
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Figure 2: Intermediate SIMP solutions at iterations 0, 5, 15, and 60 (from 

top left to bottom right). The densities are defined on a Cartesian voxel 
grid and binarized and smoothed for visualization using Taubin 
smoothing (Taubin, 1995 ). 

a ppl ying the Fourier tr ansform, element-wise m ultiplication in 

the frequency domain, and then transforming back using the in- 
verse Fourier transform. For a schematic illustration of the U-Net 
FNO arc hitectur e, see Fig. 1 . Note that our a ppr oac h differs from 

the U-FNO proposed in Wen et al. ( 2022 ), where the authors ap- 
pend a conventional U-Net path in each Fourier layer without an 

ov er all U-Net structure. 

3.3. Equivariant NOs 

In man y mac hine learning tasks, w e possess prior kno wledge 
about the equivariances our predictor should ha ve . Including 
suc h knowledge dir ectl y into the model can significantl y enhance 
learning by freeing up model capacity for other factors of varia- 
tion (Dittmer et al., 2022 ; Weiler et al., 2018 ). Equivariance is the 
property of a function or operator to commute with the actions 
of a symmetry group that acts on both its domain and range. For 
a giv en tr ansformation gr oup G , we call an oper ator G : A → U
(G-)equivariant if and only if 

G 
(
T A g [ a ] 

)
= T U g [ G(a ) ] ∀ g ∈ G, a ∈ A , (2) 

where T A g and T U g denote linear group actions in the corresponding 
spaces A and U (Cohen & Welling, 2016 ). In simpler terms, when 

we transform an input function a ∈ A by a transformation g ∈ 

G and then pass it through G, it should yield the same result as 
first a ppl ying G to a and then transforming the output G(a ) . By 
construction, convolutional oper ators ar e inher entl y tr anslation 

equivariant. Ho w ever, b y choosing G accor dingly, w e can addi- 
tionally enforce equivariance with respect to any desired group 

transformation. 

Since G is a group, it encompasses an identity transformation 

and a unique inverse g −1 for each g ∈ G . Consequently, we can 

r ephr ase the initial equivariance condition ( 2 ) as follows: 

G(a ) = T U g −1 

[ 
G 

(
T A g [ a ] 

)] 
. 

This formulation enables us to implement equivariance through 

a technique known as group averaging (Murphy et al., 2018 ; Puny 
et al., 2021 ) by defining an equivariance wrapper (Dittmer et al., 
2022 ) G G as 

G G (a ) := 

1 
| G | 

∑ 

g∈ G 
T U g −1 

[ 
G 

(
T A g [ a ] 

)] 
. 

G G is equivariant with respect to the transformation group G , as 
can be easily demonstrated (Dittmer et al., 2022 ). 

4. SIMP Trajectory Learning 

In this section, we a ppl y NOs to TO. To our kno wledge, w e are 
pioneering using NOs to replace the PDE solver within the SIMP 
method. 

SIMP uses the notion of a material density function over a pre- 
defined design domain that takes values in the interval [0, 1]. This 
density function indicates the extent to which material is present 
in each point of the design domain. SIMP iteratively optimizes and 

updates this density function to ac hie v e the user’s objectiv es (see 
Figs 2 and 3 ). We want to make clear that SIMP operates on a dis- 
crete voxel grid and can therefore – unlike Level-Set Methods (M. Y. 
Wang et al., 2003 ) and Moving Morphable Components (Guo et al., 
2014 ; Rostami et al., 2023 ) – create non-smooth boundaries in the 
resulting design. 

SIMP’s most common optimization objective is compliance, 
which can be interpreted as a measure of structural integrity. 
Compliance is defined as the scalar product 〈 u , f 〉 between dis- 
placements u and external forces f . We obtain the displacements 
as the solution of the PDE for linear elasticity given by 

− [ λ(ρ ) + μ(ρ ) ] ∇ (∇ · u ) − μ(ρ )�u = f. (3) 

In this equation, ρ r epr esents the density distribution, and λ and 

μ are the Lamé parameters that define the material’s properties. 
SIMP’s main bottleneck is its reliance on solving the PDE for 

linear elasticity ( 3 ) in each iteration to determine the compli- 
ance based on the current density configuration ρ. We aim to 
alle viate this bottlenec k by learning a NO. Let U = L 2 (D;R 

3 ) and 

A = L 2 (D; [0 , 1]) × U ⊂ L 2 (D;R 

4 ) . We learn the PDE solution opera- 
tor: 

G θ : A → U 

(ρ, f ) �→ u, 

Figure 3: Visualization of an iteration of the SIMP algorithm for TO. Each iteration involves solving the PDE for linear elasticity to determine the 
displacements u . Subsequently, we calculate the compliance, a common objective in TO. Gradient-based optimization leads to an updated density 
distribution, which we filter using a smoothed Heaviside function to discourage non-binary densities. 
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where ρ ∈ L 2 (D; [0 , 1]) is the material density function, f ∈ U are 
the external forces, and u ∈ U is the displacement field, which con- 
stitutes the solution of the PDE. 

We train G θ in a supervised fashion by minimizing the loss func- 
tion: 

L (u pred , u ) := 

∥∥u pred − u 
∥∥2 

2 + α
∥∥∂ ρ

〈
u pred , f 

〉 − ∂ ρ
〈
u, f 

〉∥∥2 
2 , (4) 

where u pred = G θ (ρ, f ) is the model prediction, α > 0 is a weight 
factor, and ∂ ρ is the partial deri vati ve with respect to the den- 
sity ρ. We include the second summand in equation ( 4 ) be- 
cause accurate function approximations do not ensure accu- 
r ate gr adient a ppr oximations , i.e ., gradient-consistency. Good 

gr adient a ppr oximations ar e essential for a ppr oximating the 
ground truth SIMP optimization trajectory for compliance min- 
imization, as we will demonstrate in Section 5 . While our ap- 
pr oac h shar es similarities with the ones introduced in Lunz et al. 
( 2021 ) and Qian and Ye ( 2021 ), w e enfor ce gradient-consistenc y 
mor e dir ectl y and avoid using a secondary network for gradient 
predictions. 

5. Experiments 

We will now conduct a compar ativ e anal ysis of v arious NOs, as in- 
troduced in Section 3 . We compare a standard U-Net arc hitectur e 
with two FNOs and with our U-Net FNO a ppr oac h (see Sec- 
tion 3.2 ). For all models, we consider both equivariant and 

non-equivariant cases. As we will use the SELTO disc 
dataset (Dittmer et al., 2022 , 2023 ) for our experiments, we 
follow Dittmer et al. ( 2022 ) and choose the transformation group 

G as the group of 2D rotations and reflections. 

5.1. Setup and training 

We will now describe the numerical setup of our experiments. 
We begin with the arc hitectur es used. The U-Net consists of three 
encoding and three decoding blocks with skip connections. In 

eac h bloc k, we use instance normalization (Ulyanov et al., 2016 ) 
and Rectified Linear Unit (ReLU) activation functions. We perform 

all convolutions with a 3 × 3 × 3 filter. For the Fourier-based 

models, we truncate the number of Fourier modes in x , y , and 

z direction to k max = (6, 6, 3). We employ a similar number of 
learnable parameters of around 500.000 for all models. We run 

all training on a GeForce RTX 2080 Ti GPU and determine the 
batch sizes individually based on the VRAM capacity. This leads 
to batch sizes of 70 for models with equivariance and 140 for 
models without equivariance. All experiments are implemented 

in PyTorch (Paszke et al., 2017 ) using the DL4TO (Erzmann et al., 
2023 ) and the NO (Li, K o v ac hki, et al., 2020a ) software libraries. 

For the construction of our datasets, we use subsets of the 
SELTO disc dataset (Dittmer et al., 2022 , 2023 ), which contains al- 
most 10.000 3D TO pr oblems and associated gr ound truth densi- 
ties defined on a 39 × 39 × 4 grid. We conduct training on subsets 
containing 10, 50, 100, and 200 differ ent TO pr oblems. This enables 
us to assess sample efficiency (Dittmer et al., 2022 ), i.e., model per- 
formance when trained on smaller training subsets. We run i max = 

60 iterations of SIMP for each problem and save the intermediate 
and final densities, along with their r espectiv e displacement ten- 
sors that we obtain from solving the PDE for linear elasticity ( 3 ). 
This leads to training sets containing 600, 3000, 6000, and 12000 
samples, r espectiv el y. 

T hroughout the experiments , w e emplo y the Adam opti- 
mizer (Kingma & Ba, 2014 ) with a learning rate of 10 −4 . We train all 
models until their impr ov ement on the validation set has not im- 

pr ov ed for 100 epochs and then pick the model corresponding to 
the best validation epoch. This stopping criterion results in mod- 
els being trained for 100 to 1000 epochs, leading to training times 
between 2 and 14 hours. 

5.2. Ev alua tion 

After training, we run SIMP with the learned PDE solvers on all 
pr oblems fr om the test dataset and compar e their performance 
to the classical SIMP that relies on the Finite Differences Method 

(FDM). In order to quantify the performance of the learned SIMP 
algorithm, we use the following two a ppr oac hes: 

(i) We e v aluate the quality of SIMP’s final predictions via 
the criteria intersection over union (IoU), fail percentage 
(fail%, Dittmer et al., 2022 ), and mean compliance. IoU is the 
most common region-based metric for binary semantic seg- 
mentation. Fail% is the fraction of failed model predictions. 
We consider a prediction failed if the von Mises stress in any 
voxel exceeds the limiting yield stress by more than 10% or 
if at least one voxel with a load case does not connect to one 
containing Dirichlet conditions. For the computation of the 
mean compliance we normalize the forces f with the infin- 
ity norm ‖ f ‖ ∞ 

. Both fail% and compliance are metrics that 
e v aluate the structur al integrity of a design. While w e fav or 
fail% for its inter pr etability, the inclusion of compliance in 

our analysis is motivated by its widespread recognition as a 
conv entional e v aluation criterion in the field. As suc h, both 

metrics have been incorporated into our investigation to up- 
hold methodological consistency with established sc holarl y 
standards. 
Another typical e v aluation criterion in the DL for TO liter- 
ature is the (balanced) accuracy metric. Howe v er, we found 

that in most cases, IoU yields comparable values but, in 

gener al, r eflects the quality of its input more appropriately 
when used across different datasets (Dittmer et al., 2022 ). 
Given that we can inter pr et the binary densities of our 
structures as segmentation masks, IoU’s applicability is not 
surprising as it is the most common metric for semantic 
segmentation. 

(ii) We e v aluate de viations fr om the gr ound truth SIMP opti- 
mization trajectory by computing the weighted mean abso- 
lute error (WMAE) for each intermediate SIMP iteration. For 
iteration i ∈ N , 1 < i ≤ i max , w e define the WMAE as follo ws: 

WMAE (i ) := 

c i 
Nn e 

N ∑ 

k =1 

n e ∑ 

e =1 

∣∣∣ρe,i 
pred ,k − ρe,i 

k 

∣∣∣ . (5) 

Here, ρe,i 
pred ,k and ρe,i 

k denote the predicted and the ground 

truth density for problem k at SIMP iteration i at voxel 
element e . N and n e are the number of test samples 
and elements, r espectiv el y. The weighting factor c i := 

1 
Nn e 

∑ N 
k =1 

∑ n e 
e =1 

∣∣∣( ρe,i max 
k − ρ

e,i max −1 
k ) / ( ρe,i 

k − ρe,i −1 
k ) 

∣∣∣ impr ov es the 

inter pr etability by accounting for large changes in the den- 
sity of the ground truth SIMP trajectory and is scaled such 

that c i max = 1 . For example, to explain the role of c i we can 

consider a toy example with a uniform density that changes 
over the course of iterations, ( ρe,i 

k ) 5 i =1 = ( 1 , 0 . 5 , 0 . 3 , 0 . 2 , 0 . 25) 
for all voxel elements e . In that case, the weighting factors 
c i = (0.1, 0.25, 0.5, 1) reduce the contribution of errors due to 
lar ge r elativ e c hanges in gr ound truth density to the WMAE, 
which leads to less distorted and more intuitive curves with 

a smoother ov er all sha pe. 
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Figure 4: IoU, fail%, and WMAE of U-Net FNOs tr ained with and without the compliance gr adient summand added to the loss function ( 4 ). Models 
without equivariance are depicted with dashed lines. We can observe that the gradient loss summand is necessary, and training without it fails entirely. 

Table 1: IoU, fail%, and mean compliance scores of models with and without equivariance, trained on subsets of 10 to 200 SIMP trajec- 
tories. High IoU values are desirable, while lo w er values are preferable for fail% and compliance. 

# SIMP 
trajectories 

# Training 
samples 

U-Net FNO U-FNO U-Net FNO (ours) 

IoU Fail% Compl IoU Fail% Compl IoU Fail% Compl IoU Fail% Compl 

(a) Without equivariance 

10 600 0.35 67 .50 3.77 0.29 73.75 4.52 0.30 68.25 4.12 0.32 67 .25 3.49 
50 3000 0.43 41 .50 1.43 0.37 62.50 3.71 0.38 58.10 3.11 0.47 35 .50 1.21 
100 6000 0.59 21 .25 1.13 0.38 46.25 2.60 0.48 43.50 2.88 0.64 19 .10 1.10 
200 12000 0.67 11 .25 0.87 0.49 31.50 1.82 0.53 22.27 1.51 0.69 10 .32 0.92 

(b) With equivariance 

10 600 0.51 28 .50 2.29 0.44 64.25 2.04 0.43 49.52 2.93 0.53 26 .25 1.78 
50 3000 0.61 28 .75 1.40 0.48 46.50 1.38 0.55 32.55 1.06 0.63 21 .50 1.03 
100 6000 0.66 18 .75 1.36 0.58 23.42 0.91 0.62 21.40 0.98 0.70 13 .64 0.76 
200 12000 0.71 7 .50 0.63 0.60 13.50 1.12 0.68 14.64 0.82 0.73 6 .25 0.56 

It is important to underscore that our objective is not cen- 
tered on enhancing the predictive accuracy of the SIMP method. 
Instead, our focus is directed to w ar ds a speed-up of the classi- 
cal SIMP algorithm, without sacrificing significant amounts of 
accuracy. 

5.3. Results 

We now examine the outcomes of our numerical experiments. 
Specificall y, we compar e our U-Net FNO to a U-Net with conven- 
tional con volutions , with a standard FNO and with the U-FNO pro- 
posed by Wen et al. ( 2022 ). Furthermore , we in vestigate the impact 
of group equivariance on our models. 

In Fig. 4 , we show that including the gradient summand in the 
loss function ( 4 ) is indeed necessary. Running SIMP with a NO 

trained without the gradient summand fails entirely, with fail% 

scores of around 100% . Including the loss summand leads to more 
gr adient-consistent pr edictions that gener alize well on the test 
data. This finding holds significant r ele v ance for futur e r esearc h 

endeavors within the field. 
Table 1 presents the IoU, fail%, and mean compliance scores of 

different models trained on datasets containing 10, 50, 100, and 

200 SIMP trajectories. It is evident that our U-Net FNO model out- 
performs both the U-Net and the FNO models . T his is true for all 
training dataset sizes . Moreo ver, incorporating group equivariance 
enhances performance significantly. For models trained on small 
datasets, the effect is especiall y pr onounced. This also becomes 
a ppar ent when comparing individual model predictions, as dis- 
played in Fig. 5 . We can observe that equivariance improves the 
ov er all quality of predictions and can even find its own solutions 

with a slightly different topology than the ground truth. We be- 
lie v e that this showcases the str ong gener alization ca pabilities of 
our equivariant models. 

The impact of group equivariance and network arc hitectur e 
also becomes evident when analyzing deviations of the learned 

SIMP optimization trajectories from the ground truth trajectories. 
Figure 6 illustrates these deviations, with the WMAE criterion ( 5 ) 
serving as our e v aluation metric. Notabl y, the equiv ariant U-Net 
FNO model exhibits the least div er gence, indicating its superior 
ability to a ppr oximate the gr ound truth optimization tr ajectories. 
Ho w e v er, ther e is a trade-off between quality and speed, since in- 
cluding the gradient loss summand and equivariance both lead to 
longer inference times, as demonstrated in Table 2 . Nevertheless, 
all NO models provide at least a fourfold impr ov ement in infer- 
ence speed compared with the classical SIMP method. This ad- 
v anta ge becomes e v en mor e pr onounced on finer grids, since the 
computational complexity of the FDM scales quadr aticall y with 

respect to the number of total voxel elements, while it only scales 
linearly for NOs. For instance, a single FDM solution on a very fine 
voxel grid with 160 000 voxel elements takes almost 5 minutes, 
while a NO takes less than a second. 

Despite the promising results presented in this section, it 
should be noted that the application of DL for TO has its limi- 
tations and dr awbac ks compar ed with classical PDE solvers. Con- 
sidering the 2 to 14 hours of training time, coupled with the pre- 
r equisite of av ailable tr aining data, we belie v e that the use of DL in 

TO is particularly advantageous in two primary scenarios. Firstly, 
when there is a need for numerous similar components that de- 
mand individual optimization – e.g., encountered in aerospace 
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Figure 5: U-Net FNO predictions and ground truth solutions from the test dataset, trained on 200 SIMP trajectories. We can see that enforcing 
equivariance leads to better-looking samples. 

Figure 6: Comparison of WMAE ( 5 ) for the U-Net, FNO, and our U-Net FNO for each SIMP iteration, averaged over all samples from the test dataset. 
Models without equivariance are depicted with dashed lines. Different colors signify models trained on 10, 50, 100, and 200 SIMP trajectories. For 
visualization purposes, all graphs are slightly smoothed using Gaussian smoothing. Notably, the equivariant U-Net FNO model exhibits the lo w est 
WMAE scores, indicating its superior ability to approximate the ground truth optimization trajectories. 

Table 2: Av er a ge infer ence run times (in seconds) of SIMP with the classical FDM solv er and NOs, executed on an Intel Xeon Silv er 4210 
CPU. 

PDE solver FDM 

Without equivariance With equivariance 

U-Net FNO U-FNO U-Net FNO U-Net FNO U-FNO U-Net FNO 

duration 75 2 3 3 3 15 18 17 19 

engineering, where a single space rocket necessitates optimiza- 
tion for thousands of mounting br ac kets. In suc h cases, the im- 
portance of sample-efficient models cannot be overstated, as they 
contribute to minimizing the r equir ed datasets. Secondl y, DL be- 
comes adv anta geous when the tr aining dur ation can be out- 

sourced. Despite potentially lengthy training times, models can 

be trained without direct supervision, e .g., o ver the weekend. T his 
pr esents a mor e efficient alternativ e for engineering companies 
compared with the intermittent waiting periods during engineers’ 
working hours inherent to classical SIMP methodologies. 
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6. Conclusions 

We hav e demonstr ated the potential of DL surrogate models, par- 
ticularly NOs, to enhance the efficiency of data-driven PDE solving 
significantl y. We intr oduced and systematicall y compar ed se v er al 
NOs within the context of 3D TO. We demonstrated their capa- 
bility to replace the PDE solver in the widely used SIMP method. 
Crucially, we contributed a novel loss function to ensure their 
gr adient-consistency thr oughout the SIMP optimization pr ocess 
– a k e y element as without it, NOs fail to work at all within SIMP. 

Further, incor por ating gr oup equiv ariance into our a ppr oac h 

has pr ov en highl y adv anta geous by diminishing the dependence 
on large training datasets . Moreo ver, we introduced and empiri- 
call y v alidated the effectiv eness of the U-Net FNO. This novel ar- 
c hitectur e integr ates the spatial featur e-ca pturing pr o w ess of U- 
Nets with the advanced representation capabilities of FNOs. 

In future resear ch, w e w ould like to extend the validation of 
our findings by a ppl ying them to diverse datasets . T he exploration 

of m ulti-r esolution data holds particular significance, enabling 
a thor ough e v aluation of the models’ gener alization ca pabilities 
acr oss v arious scales. Additionall y, employing a finer grid could of- 
fer valuable insights. Enhancing sample efficiency remains a pri- 
ority, and one avenue to explore involves incorporating additional 
physical information about the PDE into the training pipeline. For 
instance, this could be realized through semi-supervised training 
by incor por ating a PINN loss term that le v er a ges information fr om 

forw ar d e v aluations of the PDE system. 
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